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Abstract

Network functions virtualization (NFV) can realize flexible and diverse
network services by replacing the conventional network equipment with
the combination of virtual network functions (VNFs) and commodity
servers. A certain network service can be composed of a sequence of
VNFs, i.e., service (function) chain. The service chaining (SC) problem
aims to establish an appropriate service path from the origin node to the
destination node, which holds both the resource constraints and service
chain requirements of executing the required VNFs in the designated
order. SC belongs to the complexity class NP-hard. In the previous
work, inspired by the similarity between the SC problem and the shortest
path tour problem (SPTP), we showed the capacitated SPTP (CSPTP)
based ILP for the SC problem, where CSPTP is a generalized version
of the SPTP with both the node and link capacity constraints. In this
paper, we propose Lagrangian heuristics to solve the CSPTP-based ILP
for the SC in a speedy and efficient manner. We further present that
the proposed heuristics can also solve both the service chaining and
function placement by slightly extending the network model called an

‡This article is an extended version of the paper to be presented at the 2022 IEEE/I-
FIP Network Operations and Management Symposium (IEEE NOMS 2022) [1].
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augmented network. Through numerical results, we show that the pro-
posed heuristics for the SC is competitive with the optimal resource
allocation while executing much faster than the combination of the
CSPTP-based ILP and the existing solver, i.e., CPLEX. Furthermore, we
also show that the proposed heuristics for both the service chaining and
function placement can still balance the solution optimality and com-
putational complexity, thanks to the parallel computation architectures.

Keywords: Network functions virtualization (NFV), service chaining,
function placement, integer linear programming (ILP), capacitated shortest
path tour problem (CSPTP), Lagrangian relaxation, linear relaxation,
subgradient algorithm, totally unimodular

1 Introduction

Network functions virtualization (NFV) can realizes more flexible and diverse
network services by liberating network functions from the conventional net-
work equipment (e.g., firewall, network address translation (NAT), and deep
packet inspection) and executing them as virtual network functions (VNFs) on
commodity servers (e.g., high volume servers) [2–5]. A certain network service
can be composed of a sequence of VNFs, called a service (function) chain [6].

A service chaining (SC) problem, which is one of the resource allocation
problems in NFV networks, tries to establish a service chain in response to a
service chain request (SCR) with its requirements (i.e., origin and destination
nodes, a sequence of functions, and demand for bandwidth and process-
ing) [4, 5]. It belongs to the complexity class NP-hard [7]. More specifically,
the SC problem is finding an appropriate service path from the origin node to
the destination node while running the VNFs at the intermediate nodes in the
required order under the resource constraints. Furthermore, locations of func-
tions in NFV networks affect the performance of service path, which causes
another important resource allocation problem called function placement.

Recently, several studies [8–10] have pointed out that the SC problem is
similar to shortest path tour problem (SPTP) [11, 12]. The SPTP is an extended
version of the shortest path problem (SPP) and aims to find the shortest
path from an origin node to a destination node while traversing at least one
intermediate node from given disjoint node subsets T1, . . . , TK in this order [13].
Festa proved that the SPTP belongs to the complexity class P [13]. Bhat and
Rouskas first showed the similarity between SC and SPTP and developed an
algorithm for calculating the shortest path tour, called depth first tour search
(DFTS) [8].

Different from the SPTP, the SC problem has the node and link capac-
ity constraints. Focusing only on the constraints on link capacities, several
studies extended the SPTP to constrained SPTP where the path tour does
not traverse an identical link more than once [14–16]. Ferone et al. proved
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that the constrained SPTP belongs to NP-complete [14]. In [15, 16], the con-
strained SPTP is formulated as an integer linear program (ILP) and solved
using Lagrangian heuristics.

In our previous work [10], we revealed that the SC problem can exactly be
modeled as a capacitated SPTP (CSPTP), which is a general case of the con-
strained SPTP, where it supports more general capacity constraints on both
nodes and links with real values. Inspired by the ILP formulation for the con-
strained SPTP [15] and a special network model called an augmented network,
we exactly formulated the SC problem as a CSPTP-based ILP. (We will explain
the augmented network and CSPTP-based ILP formulation in Section 3.2 and
Section 3.4, respectively.) Furthermore, we extended this ILP for both the
service chaining and function placement (SCFP), which can determine the
appropriate service path as well as the appropriate number and locations of
VNFs in NFV networks. (The details about the CSPTP-based ILP for both
the service chaining and function placement will be explained in Section 3.5.)

The high difficulties of CSPTP-based service chaining (and function place-
ment) comes from the following characteristics: (1) ensuring the use of identical
links as many times as required, (2) holding sequential execution of VNFs in
required order, and (3) meeting the node and link capacity constraints.

From the viewpoint of practicality, many studies proposed heuristic algo-
rithms for solving SC and/or SCFP to overcome the computational complexity,
in addition to the formulation of the target problems as optimization prob-
lems [9, 10, 17–21]. To deal with the tradeoff between solution optimality and
computational complexity, we proposed the DFTS-based Lagrangian heuris-
tics only for SC [1]. In this paper, we generalize the Lagrangian heuristics for
both SC and SCFP by integrating existing techniques, i.e., CSPTP, Lagrangian
relaxation, linear relaxation, DFTS, and subgradient algorithm. To be more
precise, we propose two types of Lagrangian heuristics, i.e., linear program
(LP)-based one and DFTS-based one, depending on the way to solve the
Lagrangian problem. (The details of the proposed heuristics will be given in
Section 4.) Through simulation results, we evaluate the fundamental character-
istics of the proposed heuristics and reveal the relationship between optimality
of resource allocation and computational complexity.

The main contributions of the manuscript are as follows:

1. To overcome the high computational complexity of the CSPTP while keep-
ing the optimality of SC, we propose the two types of Lagrangian heuristics,
i.e., LP-based one and DFTS-based one, for the CSPTP-based SC in a
speedy and efficient manner. Although the proposed heuristics is composed
of existing techniques, each of which was separately considered in exist-
ing studies, its novelty is the integration way of them by taking account
of the advantage of each technique. In addition, we reveal that the pro-
posed heuristics can also solve SCFP by slightly extending the augmented
network.

2. Inspired by [16], we prove that the Lagrangian problem of the CSPTP-based
ILP has a totally unimodular constraint matrix, which guarantees that the
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linear relaxation of the Lagrangian problem maintains the integrality of
the decision variables (i.e., optimal solution(s)) while reducing the practical
computation time.

3. Through numerical results of online SC, we demonstrate that the proposed
heuristics can calculate almost optimal service paths even under situations
where the original CSPTP-based ILP cannot be solved by the existing
solver, CPLEX [22], in a real-time manner. We also show that the proposed
heuristics can speedily and efficiently solve SCFP in a batch manner, thanks
to the parallel computation architectures.

The rest of the manuscript is organized as follows. Section 2 gives the
related work. In Section 3, we give the system model and CSPTP-based ILP
for SC and SCFP. To address the computational complexity, we propose the
Lagrangian-based heuristics for solving the CSPTP-based ILP for SC and
SCFP in Section 4. Sections 5 and 6 demonstrate the fundamental characteris-
tics of the proposed heuristics for SC and SCFP, respectively. Finally, Section 7
gives the conclusions.

2 Related Work

2.1 Service Chaining Problem

SC is one of the challenging resource allocation problems in NFV networks [3–
5]. It aims to establish an appropriate service path while holding both the
resource constraints and service chain requirements, which belongs to the com-
plexity class NP-hard [7]. To address this problem, there have been many
studies on efficiently solving the SC problem [10, 17–21]. Sun et al. proposed an
ILP formulation and a heuristic algorithm for the power-efficient and traffic-
aware SC in multi-domain networks [19]. Huin et al. applied the layered graph
model to the ILP formulation for the SC problem to minimize the total link
utilization and developed the heuristic algorithm [20]. Nguyen et al. adopted
the expanded network model to the ILP formulation for the SC problem to
minimize the total network utilization and developed the Lagrangian heuris-
tic algorithms [21]. Sallam et al. applied the graph transformation to the SC
problem and formulated it as a multi-commodity maximum flow problem [17].
Recent surveys on the SC problem are found in [3–5].

2.2 Similarity between Service Chaining Problem and
SPTP

Several studies pointed out that the SC problem is similar to SPTP [8–10].
Bhat and Rouskas developed the efficient algorithm for calculating the SPTP,
called DFTS [8]. The DFTS algorithm, however, does not consider the load
and capacity of each physical node and link. Focusing on the similarity between
SC and SPTP, Gao et al. implemented the congestion-aware online routing
algorithm for SC to minimize the maximum network utilization by using a
potential function [9]. Similarly, in [10], we formulated the CSPTP-based ILP
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for SC using an augmented network and developed a greedy-based heuristic
algorithm,which sequentially conducts the shortest path selection. To improve
the balance between computational complexity and optimality, in this paper,
we propose the DFTS and LP-based Lagrangian heuristics for the online SC to
solve the CSPTP with low computational complexity. The difference between
the DFTS-based one and LP-based one is the way to solve the Lagrangian prob-
lem. The first one employs the existing shortest path tour algorithm [8] while
the second one focuses on the fact that the Lagrangian problem of the original
CSPTP-based ILP can be linearly relaxed without losing its optimality. We
further present the applicability of the proposed heuristics to SCFP.

As mentioned in Section 1, the CSPTP is the generalized version of the con-
strained SPTP [14–16]. Saraiva and Andrade formulated the constrained SPTP
as an ILP and implemented the Lagrangian-based heuristic algorithm [15, 16].
In [16], they also showed that the constraint matrix of the Lagrangian problem
of the constrained SPTP-based ILP is totally unimodular [23], which guar-
antees that feasible solution(s) are located at extreme point(s) of an integral
polyhedron. In the conference version of this paper [1], we proposed the DFTS-
based Lagrangian heuristics for SC. In this paper, we further propose the
LP-based Lagrangian heuristics for SC, which guarantees the linear relaxation
of the Lagrangian heuristics maintains the integrality of the decision variable
while reducing the practical computation time, thanks to the totally unimod-
ular constraint matrix. Inspired by [16], we will show that the Lagrangian
problem of our CSPTP-based ILP for SC also has the totally unimodular
constraint matrix.

2.3 Service Chaining and Function Placement Problem

Service paths require to visit some physical nodes capable of their demand-
ing functions (VNFs). In other words, the function placement problem also
arises to determine the optimal number and locations of functions, which can
yield optimal service paths while suppressing the deployment costs. Bhamare
et al. formulated the VNF placement problem as an ILP to minimize the
response time and inter-cloud traffic and proposed a greedy based heuristic
approach [24]. In [25], the authors modeled the VNF placement as a facility
location problem to minimize resource consumption and proposed a heuristic
algorithm to tackle the computational complexity. Hyodo et al. estalibshed the
function placement problem for SC as an ILP thanks to a layered graph and
developed a heuristic algorithm by relaxing both visiting order and non-loop
constraints [18].

Solving both the service chaining and function placement at the same time
will open the possibility of better service paths at the cost of further com-
putational complexity [10, 26–28]. Dieye et al. formulated SCFP in content
delivery networks as an ILP to minimize the operational cost while meeting
a certain level of quality of service (QoS), i.e., the predefined delay threshold,
and proposed a heuristic algorithm based on the Page Rank algorithm [26].
In [27], the authors proposed an ILP for both the online and batch SCFP to
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minimize the resource consumption considering the sharing of VNFs across
tenants. Alleg et al. formulated a mixed integer quadratically constrained pro-
gram for SCFP to minimize the resource consumption while satisfying service
level agreements, i.e., the predefined end-to-end delay threshold [28]. Kiji et
al. formulated a VNF placement and routing model for multicast services as
an ILP to minimize the placement cost and link utilization [29, 30].

In [10], we also dealt with the CSPTP-based ILP for SCFP and proposed
a simple greedy-based heuristic algorithm to tackle the scalability and compu-
tational complexity. In the conference version of this paper [1], we tackled the
computational complexity of the SC problem with the help of the DFTS-based
Lagrangian heuristics only for SC. In addition to the SC problem, in this paper,
we further propose the DFTS/LP-based Lagrangian heuristics for SCFP by
extending the augmented network model proposed in the previous work [10],
which can determine both the optimal number and locations of functions by
finding service paths while exploring all possibilities of function placement.

2.4 Network Models for Service Chaining

The above mentioned special network models, i.e., layered graph [18, 20],
expanded network [21], and augmented network [10], contribute to achieving
effective SC. Both the layered graph and expanded network generate a hier-
archical network with multiple copies (layers) of the original physical network
in response to the service chain requirement [18, 20, 21]. This indicates that
they may be required to reconstruct the hierarchical network per SCR because
each SCR may require the different number of VNFs and/or different VNF
sequence.

Different from them, the augmented network can be constructed by extend-
ing the original physical network with imaginary nodes, each of which is
responsible for the corresponding VNF and connected to physical node(s)
possessing it through a virtual link. Note that the details of the augmented
network will be shown in Section 3.2. The augmented network can support
arbitrary SCRs by preparing the imaginary nodes for all possible functions.
This leads to alleviate the overhead of the network reconstruction and will
be more attractive to the online SC. Therefore, in this paper, we adopt the
augmented entwork to solve the online SC.

The augmented network approach [10] is similar to the virtual network
embedding (VNE) problem [31] in terms of the network construction way. More
precisely, the augmented network approach aims at mapping a function f to
a physical node v by connecting the physical node v to the imaginary node v̂f
responsible for the function f through the virtual link (v̂f , v). On the other
hand, the VNE problem aims at mapping a virtual node (resp. a virtual link) to
a physical node (resp. physical link(s)). We should note that the term “virtual
link” has a different meaning between the two approaches. In other words, the
augmented network approach considers only function mapping while the VNE
problem considers both node and link mapping.
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Table 1 Notations.

Symbol Description

G Physical network G = (V, E)
V Set of physical nodes, V = |V|
VVNF Set of VNF-enabled physical nodes, VVNF ⊆ V, VVNF = |VVNF|
E Set of physical links, E = |E|
F Set of functions, F = {f1, . . . , fF }, F = |F|
Fi Set of functions contained in physical node i ∈ V
Nf Set of physical nodes possessing function f ∈ F in SC (Nf = |Nf |)
N ∗f Set of physical nodes possessing function f ∈ F in SCFP (N∗f = |N ∗f |)
C Set of SCRs, C = |C|
c Service chain request with origin oc and destination dc
Rc Sequence of functions (fc,1, . . . , fc,Kc ) required by c
Kc Set of function indices required by c, Kc = {1, . . . ,Kc}
K+

c Set of subpath indices of Sc, Kc = {1, . . . ,Kc + 1}
G+ Augmented network G = (V+, E+),

V+ Set of nodes on augmented network, V+ = V ∪ V̂
E+ Set of links on augmented network, E+ = E ∪ Ê in ∪ Êout
V̂ Set of imaginary nodes, V̂ = {v̂f}f∈F ,

where imaginary node v̂f is responsible for function f

V+
i Set of neighbors of node i, V+

i ⊆ V
+

Ê in Set of incoming virtual links, Ê in = {(v, v̂) | v ∈ V, v̂f ∈ V̂, f ∈ Fv}
Êout Set of outgoing virtual links, Êout = {(v̂, v) | v̂f ∈ V̂, v ∈ V, f ∈ Fv}
Sc Service path for c, (Sc,1, . . . ,Sc,Kc+1)
Sc,k kth sub service path with origin αc,k and destination βc,k
bc Bandwidth requirement of c
pnodec Processing requirement of c for traversing a node
pfuncc,fc,k

Processing requirement of fc,k ∈ Rc at a node

Bi,j Residual bandwidth of link (i, j) at arrival of c
Pi Residual processing capacity of node i at arrival of c
dlinki,j Propagation delay of link (i, j) ∈ E
dnodei Traversal delay of node i ∈ V
dfuncv̂f ,v Processing delay of function f of node v ∈ V
xc,ki,j Binary decision variables: 1: if link (i, j) is included in Sc,k, 0: otherwise

yc,ki Binary decision variables: 1: if node i is used in Sc,k, 0: otherwise
T c,k Set of imaginary nodes responsible for function fc,k ∈ Rc

µ, γ Lagrangian multipliers
h, g Subgradient
ω, θ, ε Weighting parameter, step size, and optimality tolerance
τ , Tmax Iteration ID and maximum number of iterations in Lagrangian heuristics
ZSC(x) CSPTP-based ILP for SC
ZSCFP(x) CSPTP-based ILP for SCFP
L(x,µ,γ) Lagrangian function
ΦSC(µ,γ) Lagrangian problem for SCFP
ΦSCFP(µ,γ) Lagrangian problem for SCFP

3 System Model

We consider the system model used in [10]. In this section, we briefly explain it
from the viewpoint of the SCR, the augmented network, and the CSPTP-based
ILP for the service chaining (and function placement), respectively. Table 1
summarizes the notations used in this paper.
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Augmented network

Physical network

Service path (Shortest path tour)

Service chain requirements

Imarginary node

Legacy node

Function

Physical link

Virtual link

1st subpath

2nd subpath

3rd subpath

VNF-enabled node

Fig. 1 Overview of SC.

3.1 Service Chain Request

We assume that SCRs arrive at the NFV network, e.g., a carrier network, fol-
lowing a certain stochastic process, e.g., Poisson process. An NFV orchestrator
waits for C (C ≥ 1) SCRs and solves the service chaining (and function place-
ment) problem for the pooled requests C. The processing way of the SCRs
changes according to the service type and can be categorized into two types,
i.e., online or batch processing. In the online processing (C = 1), a new arriving
SCR c will be immediately served by the orchestrator to realize the network
service with high real-time property. On the contrary, in the batch processing
(C ≥ 2), the NFV orchestrator collectively solves the service chaining (and
function placement) problem every C requests.

We assume an SCR c with service chain requirements rc =
(oc, dc,Rc, bc, pnodec , {pfuncc,fc,k

}k=1,...,Kc
). oc and dc denote an origin node and a

destination node, respectively. Rc is a sequence of Kc functions in the required
order, i.e., (fc,1, . . . , fc,Kc

). bc denotes the required constant bit rate. pnodec

(resp. pfuncc,fc,k
) represents the processing capacity required for forwarding pack-

ets (resp. executing the kth function fc,k) at a physical node. We illustrate an
example of the service chain requirements for the SCR c with two functions,
f1 and f2, at the top layer of Fig. 1. Note that fc,1 = f1 and fc,2 = f2.
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3.2 Network

We consider a directed graph G = (V, E) describing a physical network, where
V (resp. E) denotes a set of physical nodes (resp. links). Each physical link
(i, j) ∈ E (resp. each physical node i ∈ V) has residual bandwidth Bi,j (resp.
residual processing capacity Pi) at the beginning of serving the SCRs C. The
NFV network supports a set of F distinct network functions, F = {f1, . . . , fF },
and consists of two types of physical nodes: VNF-enabled physical nodes VVNF

(VVNF = |VVNF|) and legacy ones (i.e., routers and switches). Each VNF-
enabled node i ∈ VVNF can run one or more functions Fi ⊆ F while the
legacy one only supports data forwarding. Since the deployment of function(s)
to physical nodes will consume network bandwidth and storage capacity, we
assume that the network administrator wants to deploy each function f ∈ F
to a minimum number of VNF-enabled physical nodes, i.e., Nf ⊆ VVNF (Nf =
|Nf |). Note that Nf VNF-enabled physical nodes are predetermined in case
of SC while the number N∗f and set (locations) N ∗f of VNF-enabled physical
nodes possessing function f ∈ F will be dynamically adjusted in case of SCFP.

In Fig. 1, the physical network is given at the middle layer and supports
two functions (F = {f1, f2}). The physical nodes v2, v3, and v4 are VNF-
enabled physical nodes, each of which possesses one or two functions, i.e.,
Fv2 = {f1, f2}, Fv3 = {f2}, and Fv4 = {f1}. From the viewpoint of each
function, Nf1 = {v2, v4} and Nf2 = {v2, v3}. Please note that f1, which is
required as fc,1, is possessed by two physical nodes v2 and v4 but it will be
executed only at v4 in this case. (The details will be explained later.)

To deal with the CSPTP, we extend the physical network G to an aug-
mented network G+ = (V+, E+) with imaginary nodes V̂ and virtual links
Ê in ∪ Êout. Note that V+ = V ∪ V̂ and E+ = E ∪ Ê in ∪ Êout. An imagi-
nary node v̂fc,k ∈ V̂ is in charge of the kth function fc,k, which is connected

to each physical node possessing fc,k through a virtual link. Ê in (resp. Êout)
denotes a set of virtual links incoming to (resp. outgoing from) an imagi-
nary node v̂f . Note that Ê in = {(v, v̂f ) | v ∈ VVNF, v̂f ∈ V̂, f ∈ Fv} (resp.

Êout = {(v̂f , v) | v̂f ∈ V̂, v ∈ VVNF, f ∈ Fv}). The virtual link (v̂fc,k , v) ∈ Êout
means that the physical node v ∈ Nfc,k possesses the function fc,k. Further-
more, selecting the virtual link (v̂fc,k , v) as a part of the service path indicates
the execution of the function fc,k at the physical node v. Let Vi denote a set
of neighbors of node i. In Fig. 1, we show the augmented network at the mid-
dle layer. In this example, the outgoing virtual link (v̂f1 , v4) (resp. (v̂f2 , v3)) is
selected as a part of the service path, which means that f1 (resp. f2) will be
executed at v4 (resp. v3).

In contrast to the existing network models [18, 20, 21], i.e., the layered
graph and expanded network, the augmented network is constructed only at
once, which can support arbitrary SCRs by preparing the imaginary nodes
for all the functions F . As a result, the augmented network can alleviate the
overhead of network reconstruction.
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3.3 Service Path

A service path Sc with the origin oc, destination dc, and Rc = (fc,1, . . . , fc,Kc
)

is composed of a sequence of Kc + 1 subpaths, i.e., (Sc,1, . . . ,Sc,Kc+1). The
pair (αc,k, βc,k) of origin and desitnation nodes of the kth subpath is given as
follows:

(αc,k, βc,k) =


(oc, v̂fc,1), k = 1,

(v̂fc,k−1
, v̂fc,k), k = 2, . . . ,Kc,

(v̂fc,Kc
, dc), k = Kc + 1.

For example, in the bottom layer of Fig. 1, the entire service path Sc =
(v1, v3, v4, v̂f1 , v4, v2, v3, v̂f2 , v3, v2, v5) is decomposed into three subpaths, i.e.,
Sc,1 = (v1, v3, v4, v̂f1), Sc,2 = (v̂f1 , v4, v2, v3, v̂f2), and Sc,3 = (v̂f2 , v3, v2, v5).
We can confirm that executing the function f1 (resp. f2) at the physical node
v4 (resp. v3) corresponds to selecting the virtual link (v̂f1 , v4) (resp. (v̂f2 , v3))
as part of the service path Sc. Each subpath does not include any loop but
the entire service path may have loop(s). In this example, we can observe that
the physical link (v3, v4) is used twice in the service path Sc while it is used
in each subpath at most once. We cannot know how many times one link will
be included in the service path before calculating the service path itself, which
is one of the reasons making the SC problem NP-complete. We evaluate the
optimality of a service path by total delay, which will be defined in Section 3.4.

3.4 CSPTP-Based ILP for Service Chaining

Thanks to the augmented network, we formulate the SC problem as the fol-
lowing ILP ZSC(x). Let x = [xc,ki,j ] (c ∈ C, k ∈ K+

c , (i, j) ∈ E+) denote the
binary decision variables [10]:

xc,ki,j =


1, if a physical/virtual link (i, j) is included in

kth subpath of a service path for SCR c,

0, otherwise.

min
x

∑
c∈C

∑
(i,j)∈E+

di,j
∑
k∈K+

c

xc,ki,j , (1)

s.t. xc,ki,j = {0, 1}, (i, j) ∈ E+, c ∈ C, k ∈ K+
c , (2)

∑
j∈V+

i

xc,ki,j −
∑
j∈V+

i

xc,kj,i =


1 if i = αc,k,

−1 if i = βc,k,

0 otherwise,

i ∈ V+, c ∈ C, k ∈ K+
c , (3)

xc,ki,v̂fc,k
= xc,k+1

v̂fc,k ,i
,

SUBMITTED VERSION



Springer Nature 2021 LATEX template

Speedy and Efficient Service Chaining and Function Placement 11

(i, v̂fc,k) ∈ Ê in, (v̂fc,k , i) ∈ Êout, c ∈ C, k ∈ Kc, (4)

xc,ki,v̂fc,m
= 0,

(i, v̂fc,m) ∈ Ê in, c ∈ C, k ∈ K+
c ,m 6= k, (5)∑

c∈C

(
bc
∑
k∈K+

c

xc,ki,j
)
≤ Bi,j , (i, j) ∈ E , (6)

∑
c∈C

(
pnodec

∑
(v,j)∈E

∑
k∈K+

c

xc,kv,j +
∑

(v̂f ,v)∈Êout

pfuncc,f

∑
k∈K+

c

xc,kv̂f ,v
)
≤ Pv,

v ∈ V. (7)

The objective function (1) represents the minimization of the total delay of
the service path, where di,j is defined as follows.

di,j =


dnodei + dlinki,j , if (i, j) ∈ E ,

dfunci,j , if (i, j) ∈ Êout,
0, otherwise.

The total path delay is the sum of propagation delay and processing delay
along the path, where each physical link (i, j) requires the propagation delay
dlinki,j and each physical node v ∈ V requires the processing delay dnodev for data
forwarding. The VNF-enabled physical node v ∈ VVNF possessing function
f ∈ Rc also has the processing delay dfuncv̂f ,v

for executing the function f .

Constraint (2) gives the domain of the binary decision variables. The
CSPTP-related constraints are given by (3)–(7) where constraints (3)–(5) are
related to the SPTP. Constraint (3) guarantees the standard flow conserva-
tion rules. Constraint (4) ensures the connectivity between kth and (k + 1)th
subpaths of SCR c. Constraint (5) restricts the unnecessary execution of mth
function fc,m in the kth (m 6= k) subpath. Constraints (6) and (7) give the
constraints on physical link capacity and processing capacity of the physical
node, respectively.

3.5 CSPTP-Based ILP for Service Chaining and
Function Placement

The CSPTP-based ILP for SCFP, ZSCFP(x), can similarly be formulated by
extending the augmented network as follows. In the augmented network for
SCFP, we connect each imaginary node, i.e., function, to all VNF-enabled
physical nodes through virtual links, which considers all possibilities of function
placement. More specifically, the set of incoming (resp. outgoing) virtual links
is updated as Ê in = {(v, v̂f ) | v ∈ VVNF, v̂f ∈ V̂, f ∈ F} (resp. Êout = {(v̂f , v) |
v̂f ∈ V̂, v ∈ VVNF, f ∈ F}). Note that the actual number N∗f and location(s)
of each function f ∈ F will be determined by solving ZSCFP(x).

Fig. 2 illustrates the comparison between the augmented network for SC
and that for SCFP. The left bottom figure shows the augmented network for
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Augmented network for SC

Physical network

Augmented network for SCFP

Service chain requirements

Physical network

Legacy node Function location

Imarginary node Physical link Virtual link

VNF-enabled node Function location candidate

Fig. 2 Comparison between the augmented network for SC and that for SCFP.

SC, which is the same as that in Fig. 1. In this example, the locations of
f1 (resp. f2) are predefined to be v2 and v4 (resp. v2 and v3). On the other
hand, the right bottom figure is the augmented network for SCFP. We confirm
that all the VNF-enabled physical nodes (v2, v3, and v4) become the location
candidates of two functions f1 and f2.

3.6 Service Chaining vs Service Chaining with Function
Placement

Finally, we discuss the relationship between SC and SCFP from the viewpoint
of the tradeoff between the speediness and adaptability of service provisioning.
SC tries to find an optimal service path under the predefined function locations,
and thus it can speedily construct the service path and suitable for network
services with high real-time property, i.e., online processing. However, if the
network load increases, it may fail in accepting future SCRs, due to lack of
resources.

On the contrary, SCFP can flexibly adapt to demand change at the increas-
ing cost of computation and deployment. Therefore, it is suitable for batch
processing, which can utilize the network resources more effectively and accept
more SCRs under a certain predefined processing time limit. More specifically,
the batch processing simultaneously serves multiple SCRs with a certain batch
size, which can alleviate the myopic resource allocation.

4 Lagrangian Heuristics for CSPTP-Based ILP
for Service Chaining and Function Placement

To overcome the computational complexity as well as maintaining the solution
optimality as much as possible, we propose Lagrangian heuristics to solve
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Algorithm 1 Lagrangian heuristics to solve CSPTP-based ILP for service
chaining (and function placement).

Require: Optimality tolerance ε, maximum number Tmax of iterations, and
weighting parameter ω.

Ensure: Solution x∗.
1: τ ← 0, µτ ← 0, γτ ← 0
2: do
3: (x∗,Lτ )← solve(ΦSC(µτ ,γτ ))
4: if x∗ is infeasible then
5: return None
6: end if
7: (hτ , gτ )← subgradient(ΦSC(µτ ,γτ ))
8: θτµ ← ω/(

√
τ ||hτ ||), θτγ ← ω/(

√
τ ||gτ ||)

9: µτ+1 ← max{0,µτ + θτµh
τ}

10: γτ+1 ← max{0,γτ + θτγg
τ}

11: τ ← τ + 1
12: while stop condition()
13: return x∗

the CSPTP-based ILP for SC and SCFP. In what follows, for simplicity of
explanation, we mainly focus on SC in Sections 4.1 through 4.5 and explain
the extension of the proposed heuristics to SCFP in Section 4.6. Finally, we
give the discussion about computational complexity in Section 4.7.

4.1 Overview

Algorithm 1 shows the proposed Lagrangian heuristics, which is a combination
of several existing techniques, i.e., Lagrangian relaxation, linear relaxation, the
DFTS algorithm for finding the shortest path tour [8], and the subgradient
algorithm. We propose two types of the Lagrangian heuristics: LP-based heuris-
tics and DFTS-based heuristics, according to the way to solve the Lagrangian
problem.

We first formulate the Lagrangian dual problem for the CSPTP-based ILP
ZSC(x) applying the Lagrangian relaxation, which transforms CSPTP into
SPTP. (The details will be given in Section 4.2.) Next, we develop the two
approaches to efficiently solve the Lagrangian problem. In the first approach,
we further reformulate the Lagrangian problem and apply the linear relax-
ation to it, which will be given in Section 4.3. In the second approach, thanks
to the Lagrangian relaxation, we adopt the DFTS to realize the efficient com-
putational complexity. (The details will be shown in Section 4.4.) Since both
approaches require to cope with the original capacity constraints, we also adopt
the subgradient algorithm, which will be explained in Section 4.5.
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4.2 Lagrangian Relaxation

As mentioned in Section 1, the constrained SPTP only takes into account the
link capacity constraints and belongs to NP-complete [14]. Since the CSPTP
takes account of both the node and link capacity constraints, i.e., (6) and
(7), it would be also expected to belong to NP-complete. Because the SPTP
belongs to the lower complexity class P [13], we transform the CSPTP-based
ILP ZSC(x) into the SPTP-based ILP, i.e., Lagrangian problem, with the help
of Lagrangian relaxation. We formulate the Lagrangian function L(x,µ,γ) by
relaxing constraints (6) and (7) with multipliers γ = (γi,j)(i,j)∈E and µ =
(µv)v∈V (γi,j ≥ 0, µv ≥ 0), respectively:

L(x,µ,γ) =
∑
c∈C

∑
(i,j)∈E

∑
k∈K+

c

(
di,j + µip

node
c + γi,jbc

)
xc,ki,j

+
∑
c∈C

∑
(v̂f ,v)∈Êout

∑
k∈K+

c

(
dfuncv̂f ,v

+ µvp
func
c,f

)
xc,kv̂f ,v

−
( ∑
(i,j)∈E

γi,jBi,j +
∑
i∈V

µiPi

)
.

We also formulate the Lagrangian problem ΦSC(µ,γ) as follows:

ΦSC(µ,γ) = min
x

L(x,µ,γ)

s.t. (2)–(5).

Since all the constraints (2)–(5) give the SPTP-related ones, ΦSC(µ,γ) belongs
to the class P. For any µ ≥ 0 and γ ≥ 0, ΦSC(µ,γ) gives the lower
bound of the optimal objective value of the original CSPTP-based ILP, i.e.,
ΦSC(µ,γ) ≤ ZSC(x). Accordingly, finding µ and γ to maximize ΦSC(µ,γ)
leads to the minimization of ZSC(x), which can be derived by solving the
following Lagrangian dual problem:

max
γ≥0,µ≥0

ΦSC(µ,γ). (8)

4.3 Linear Relaxation

We first focus on the possibility of the linear relaxation of the ILP-based
Lagrangian problem ΦSC(µ,γ) while maintaining the integrality of the decision
variables (i.e., optimal solution(s)). Although the relaxed LP is still NP-
complete, in practical, we can much easily solve it compared with the original
ILP. To this end, we slightly modify the augmented network to ensure the
connectivity between kth and (k+1)th subpaths (k = 1, . . . ,Kc). More specif-
ically, we update the set of imaginary nodes as V̂ = {v̂f,i}f∈F,i∈Nf

where
each imaginary node represents the pair of function and physical node pos-
sessing the function. The corresponding set of incoming virtual links, Ê in, and
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Fig. 3 An example of transformation of augmented network in Fig. 1.

that of outgoing virtual links, Êout, are also updated as {(i, v̂f,i)}f∈F,i∈Nf
and

{(v̂f,i, i)}f∈F,i∈Nf
, respectively. Fig. 3 illustrates an example of transforma-

tion of the augmented network in Fig.1. Here, we also define a set of imaginary
nodes responsible for function fc,k ∈ Rc as T c,k (c ∈ C, k ∈ Kc). For simplicity
of notation, we also define T c,0 = {oc} and T c,Kc+1 = {dc}.

Inspired by [16], we reformulate the Lagrangian problem ΦSC(µ,γ) as
follows:

min
x

L(x,µ,γ)

s.t. xc,ki,j = {0, 1}, (i, j) ∈ E+, c ∈ C, k ∈ K+
c , (9)

yc,ki = {0, 1}, i ∈ T c,k, c ∈ C, k ∈ K+
c ∪ {0}, (10)

∑
j∈V+

i

xc,ki,j −
∑
j∈V+

i

xc,kj,i =


yc,k−1i if i ∈ T c,k−1,

−yc,ki if i ∈ T c,k,

0 otherwise,

i ∈ V+, c ∈ C, k ∈ K+
c , (11)∑

i∈T c,k

yc,ki = 1, c ∈ C, k ∈ Kc, (12)

yc,0oc = 1, c ∈ C, (13)

yc,Kc+1
dc

= 1, c ∈ C. (14)
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Constraints (9) and (10) give the domain of the binary decision variables. The

variables y = [yc,ki ] (c ∈ C, k ∈ K+
c ∪ {0}, i ∈ T c,k) are defined as

yc,ki =


1, if an imaginary node i is included in kth subpath

of a service path for SCR c,

0, otherwise,

and prohibit the service path from visiting the imaginary node v̂i,fc,m in kth
subpath (m 6= k). All the constraints (11)–(14) give the SPTP-related ones.
Constraint (11) ensures the standard flow conservation rules. Constraint (12)
imposes that for each kth subpath it should pass through exact one node
i ∈ T c,k. Constraint (13) (resp. (14)) means that one flow unit is generated at
the origin oc (resp. terminated at the destination dc).

In [16], the authors pointed out that the constraint matrix of the ILP-based
Lagrangian problem of the constrained SPTP is totally unimodular [23], which
can guarantee that the relaxed LP has feasible solution(s) at extreme point(s)
of an integral polyhedron, i.e., the solution(s) of the original ILP. Here, the
constraints (9)–(14) of the reformulated Lagrangian problem ΦSC(µ,γ) are the
same as those of the Lagrangian problem of the constrained SPTP formulated
in [16], i.e., totally unimodular. The difference between our problem ΦSC(µ,γ)
and the problem in [16] is the Lagrangian terms of the objective function. Con-
sequently, the linear program ΦLP

SC(µ,γ) of the Lagrangian problem ΦSC(µ,γ)
can reduce the practical computation time while maintaining its optimality.

4.4 Depth First Tour Search

To further reduce computational complexity, we straightforwardly apply the
depth first tour search (DFTS) [8], i.e., the shortest path tour finding algo-
rithm, to solve the Lagrangian relaxation ΦSC(µ,γ). For certain µ and γ,
ΦSC(µ,γ) belongs to an SPTP. Since the objective function L(x,µ,γ) is the
total path cost (delay) minus a constant

(∑
(i,j)∈E γi,jBi,j +

∑
i∈V µiPi

)
, we

can redefine the link cost di,j as follows:

di,j =


dnodei + dlinki,j + µip

node
c + γi,jbc, if (i, j) ∈ E ,

dfunci,j + µip
func
c,f , if (i, j) ∈ Êout,

0, otherwise.

To efficiently solve the SPTP, we apply the DFTS, which first calculates the
minimum cost for each subpath from k = 1 to k = Kc+1 and then applies the
Dijkstra algorithm to obtain the shortest path. To apply this algorithm, we also
use the augmented network illustrated in Fig. 3 to guarantee the connectivity
between kth and (k + 1)th subpaths (k ∈ Kc).
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4.5 Subgradient Algorithm

The last task is solving the Lagrangian dual problem, i.e., finding appropriate
µ and γ to maximize ΦSC(µ,γ). We use the subgradient algorithm [23] to
solve it. The algorithm first initializes parameters (i.e., τ , µ, and γ) (line 1)
and then solves the Lagrangian problem ΦSC(µ,γ) using solve(ΦSC(µ,γ))
function, which corresponds to either an existing solver, e.g., CPLEX, to solve
the relaxed LP ΦLP

SC(µ,γ) or DFTS to solve ΦSC(µ,γ) (line 3). If the algorithm
fails in solving the problem, it stops and no solution is found (lines 4 and
6). Otherwise, it derives the subgradient hτ (resp. gτ ) of the corresponding
variable µ (resp. γ) by calling subgradient(ΦSC(µτ ,γτ )) function (line 7).
The algorithm udpates hτ and gτ by the following rules:

hτi =
∑
c∈C

(
pnodec

∑
k∈K+

c

∑
(i,j)∈E

xc,k,τi,j +pfuncc,f

∑
k∈Kc

∑
(j,i)∈Êout

xc,k,τj,i

)
− Pi,

gτi,j =
∑
c∈C

bc
∑
k∈K+

c

xc,k,τi,j −Bi,j ,

where hτi (resp. gτi,j) denotes ith element of hτ (resp. (i, j)th element of gτ ).
Based on the subgradient and step size at iteration τ (i.e., θτµ and θτγ), it
updates µτ+1 and γτ+1 (lines 9–10):

µτ+1
i = max{0, µτi + θτµh

τ
i }, (15)

γτ+1
i,j = max{0, γτi,j + θτγg

τ
i,j}, (16)

θτµ = ω/(
√
τ ||hτ ||), θτγ = ω/(

√
τ ||gτ ||),

where ω denotes a weighting parameter. If hτi (resp. gτi,j) is less than or equal

to zero, (7) (resp (6)) holds, and thus the algorithm will reduce µτ+1
i (resp.

γτ+1
i,j ) as in (15) (resp. (16)) to weaken the penalty for violating (7) (resp. (6)).

Otherwise, it strengthen the penalty for violating (7) (resp. (6)) by increasing
µτ+1
i (resp. γτ+1

i,j ) as in (15) (resp. (16)).
The algorithm repeats this procedure by gently decreasing the step size

(line 8) until satisfying the stop conditions given by stop condition() func-
tion (lines 2–12). To be more precise, it will stop when holding one of the
following three conditions. The first condition is the optimal stop condition
where the solution x∗ of the Lagrangian problem ΦSC(µτ ,γτ ) also becomes
that of the original CSPTP-based ILP ZSC(x) by satisfying the original
CSPTP-related constraints at the first iteration. The second condition is the
relative-gap based stop condition where x∗ satisfies the CSPTP-related con-
straints and the relative improvement ratio of the objective value between τth
and (τ + 1)th iteration, i.e., (Lτ+1 −Lτ )/Lτ , is less than or equal to the opti-
mality tolerance ε. The last condition is the iteration-limit based condition
where the number of iterations reaches a predefined threshold Tmax.
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Table 2 Network scale comparison among six problems.

Network model # of nodes # of links

Augmented network in ZSC(x) V + |
⋃
c∈C Rc| E + 2|

⋃
c∈C Rc|N

Augmented network in ZSCFP(x) V + F E + 2FN
Augmented network in ΦSC(x) V + |

⋃
c∈C Rc|N E + 2|

⋃
c∈C Rc|N

Augmented network in ΦSCFP(x) V + FN E + 2FN
Layered graph model [18, 20]

∑
c∈C(Kc + 1)V

∑
c∈C(Kc + 1)E + KcN

Expanded network model [21]
∑
c∈C(Kc + 1)V

∑
c∈C(Kc + 1)E + KcN

4.6 Applicability to Service Chaining and Function
Placement

The above-mentioned Lagrangian heuristics for SC can easily be extended
to that for SCFP by replacing the network model of ZSC(x) with that of
ZSCFP(x). More specifically, we formulate the Lagrangian problem ΦSCFP(x)
of the CSPTP-based ILP ZSCFP(x) for SCFP, modify Algorithm 1 by replacing
ΦSC(x) with ΦSCFP(x), and finally solve the Lagrangian dual problem in the
same manner.

4.7 Computational Complexity

Finally, we discuss the computational complexity of the DFTS-based
Lagrangian heuristics. (Note that the computational complexity of the LP-
based Lagrangian heuristics is the complexity class P.) The Lagrangian
heuristics serves C SCRs and iterates the while loop (lines 2–12) at most Tmax

times. In each loop, DFTS, i.e., solve(ΦSC(µ,γ)), in line 3 becomes bottle-
neck. The computational complexity of DFTS is given by O(C(Kc + 1)V +) +
O(C(Kc + 1)E+ log V +), where the first term means the computational com-
plexity of the calculation of the minimum cost for each subpath k ∈ K+

c for the
C SCRs and the second one means the computational complexity of the Dijk-
stra algorithm to obtain the entire shortest path for each of the C SCRs [8].
As a result, the computational complexity of the Lagrangian heuristics based
on DFTS becomes O(TmaxC(Kc + 1)V +) +O(TmaxC(Kc + 1)E+ log V +).

In case of the batch processing (i.e., C ≥ 2), we confirm that the com-
plexity of DFTS to solve ΦSC(µ,γ) and ΦSCFP(µ,γ) increases with the size
of C. To further reduce the computation time, we can adopt parallel com-
putation to DFTS to derive the shortest path tour for each of C SCRs, i.e.,
solve(ΦSC(µ,γ)) and solve(ΦSCFP(µ,γ)). DFTS can simultaneously calcu-
late the shortest path tour for each of C SCRs under the capacity constraints
by sharing the penalty to the capacity violation of physical nodes and links
among them. Note that in terms of the ILP and LP, the existing solver (i.e.,
CPLEX) also supports the parallel optimization.

Table 2 presents the network scale comparison among the augmented net-
works used in the above mentioned four problems and the two kinds of existing
network models, i.e., layered graph model [18, 20] and expanded network
model [21]. For simplicity, we assume that Nf = N (N > 0, f ∈ F). We first
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Table 3 Service chain demand and requirements [20, 32] of 5 aggregated users (NAT:
Network Address Translator, FW: Firewall, TM: Traffic Monitor, WOC: WAN
Optimization Controller, IDPS: Intrusion Detection Prevention System, and VOC: Video
Optimization Controller).

Service Sequence of functions Demand bc

Web service NAT-FW-TM-WOC-IDPS 18.2% 500 kbps
VoIP NAT-FW-TM-FW-NAT 11.8% 320 kbps
Video streaming NAT-FW-TM-VOC-IDPS 69.9% 20 Mbps
Online gaming NAT-FW-VOC-WOC-IDPS 0.1% 20 Mbps

Table 4 Relationship between function type, processing requirements per SCR (5
aggregated users), and demand [32] (pnodec = 0.0025).

Function type pfuncc,f,k Demand

NAT 0.0046 22.6%
FW 0.0045 22.6%
TM 0.0665 20.2%
IDPS 0.0535 16.6%
VOC 0.0270 14.2%
WOC 0.0270 3.7%

focus on the difference between the Lagrangian problems and ILPs. The num-
ber of imaginary nodes in the Lagrangian problems increases compared with
that in the ILPs, due to the network transformation to guarantee the connec-
tivity between kth and (k+ 1)th subpaths. The impact of this increase on the
system performance will be evaluated in Section 5. Focusing on the difference
between SC and SCFP, we confirm that the size of augmented network for SC
(resp. SCFP) increases in proportion to the product of |

⋃
c∈CRc| and N (resp.

that of F and N). Note that |
⋃
c∈CRc| is the number of functions required by

C SCRs while F is the total number of functions (i.e., |
⋃
c∈CRc| ≤ F ).

Next, focusing on the scale difference between the augmented network
models and the existing network models, we can confirm that the augmented
network model, i.e., ZSC(x) and ΦSC(x), becomes smaller than layered graph
and expanded network models with increase of Kc. In addition, these existing
network models require to construct a tailor-made network adaptive to the
arrival of new SCR(s) while our approach can reuse an augmented network for
arbitrary SCRs.

5 Numerical Results of Online Service Chaining

In this section, we evaluate the effectiveness of the proposed heuristics in terms
of the computational complexity and performance of SC. For the evaluation,
the server with Intel Core i9-9900K 8 core and 64 GB memory is used.

5.1 Evaluation Scenario

To evaluate the proposed heuristics in terms of the scalability and optimality,
we consider a carrier network based on a physical network with 200 physical
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nodes, inspired by [20, 21, 24]. Physical links are randomly generated between
two arbitrary physical nodes with the probability π = 0.032 as in [33]. As in
[20, 21, 24], we expect that if the proposed heuristics works well in the above
network, it will also work in other networks with simpler structures, e.g., fat-
trees [34]. We assume that each physical node i has the processing resources
of 10-core CPU, i.e., Pi = 10, and each physical link between physical nodes
i and j (i, j ∈ V, i 6= j) has identical bandwidth capacity Bi,j = 10 Gbps.
Each physical link delay dlinki,j between two physical nodes i and j follows a
uniform distribution in the range of [9, 11] ms and takes the average of 10 ms.
The traversal delay dnodev at physical node v ∈ V (resp. the processing delay
dfuncv̂f ,v

for executing function f ∈ F at physical node v ∈ Nf ) follows a uniform

distribution in the range of [0.09, 0.11] ms (resp. [45, 55] ms) and takes the
average of 0.1 ms (resp. 50 ms).

We use the service chain demand and requirements in Table 3. We assume
six function types (F = 6) and four service types, each of which consists of
five functions (Kc = 5). In this SC scenario, we randomly choose 30 physical
nodes as VNF-enabled ones (VVNF = 30) and further allocate Nf VNF-enabled
physical nodes randomly chosen from them to each function f ∈ F . Note
that in the SCFP scenario, which will be given in Section 6, we will reveal
the optimal number and locations of functions and the impact of the number
of VNF-enabled physical nodes. For each SCR c, we select one of the ser-
vices according to the demand distribution in Table 3. Every SCR c serves 5
aggregated users, which requires the aggregate processing requirement for data
forwarding, pnodec = 0.0025, and that for each function f ∈ F , pfuncc,f,k, given in
Table 4. Note that Table 4 also gives the demand for each function f ∈ F as
a result of the service selection according to Table 3. We randomly choose the
origin node oc and destination node dc of SCR c from the set V of physical
nodes such that oc 6= dc.

We consider the online SC (i.e., C = 1) to focus on network services with
high real-time property. A simulator for the online SC was implemented in
C++ programming language with the boost graph library [35]. In the simula-
tion, we assume that the simulator obeys the following queuing model. A new
SCR c arrives at the system according to a Poisson process with parameter
λ > 0. The new request will be added to the end of the queue with infinite
buffer. The NFV orchestrator tries to calcualte an appropriate service path for
each SCR in a first come first served (FCFS) manner. If the NFV orchestrator
succeeds in finding the service path that meets both the resource constraints
and service chain requirements, it will establish the corresponding service path
with the service delay. Considering the fact that services in Table 3 tend to
require long-term communications, we assume that each established service
path persistently occupies the allocated resources of physical nodes and links
during the simulation. Through preliminary experiments, we confirmed that
the NFV network capacity, i.e., the number of SCRs that the NFV network
can accommodate, becomes 713 in average if the optimal resource allocation is
realized, which can be regarded as the solution of the CSPTP-based ILP with
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no execution time. We set the simulation time to be 100 s such that the NFV
network eventually reaches this saturated situation by increasing λ.

We evaluate two types of the proposed Lagrangian heuristics for SC,
i.e., LP-based Lagrangian heuristics and DFTS-based Lagrangian heuristics.
Through the preliminary experiments, we use δ = 0.05, ω = 100, and Tmax = 3.
For comparison purpose, we also evaluate the CSPTP-based ILP and the greedy
algorithm [10]. The CSPTP-based ILP can be regarded as the optimal com-
parison scheme in terms of the total delay (i.e., objective function) because
it can always achieve the minimum total delay if the execution time can be
ignored. On the other hand, the greedy algorithm can be regarded as the
comparison scheme with the minimum computational complexity. The greedy
algorithm decomposes the service path into Kc + 1 subpaths and sequentially
tries to calculates a shortest path for each subpath from the beginning (k = 1)
to the end (k = Kc + 1). As a result, its computational complexity becomes
O(C(Kc+1)E+ log V +) [10]. As for the proposed heuristics and CSPTP-based
ILP, we can apply the parallel computation architectures. In case of the DFTS-
based Lagrangian heuristics, we use OpenMPI [36] to calculate the shortest
path tour per SCR in parallel. For the CSPTP-based ILP and LP-based heuris-
tics, we use the existing solver CPLEX 12.8 to solve them where CPLEX
supports the parallel optimization and the number of threads is set to be 32.

We should note here that each scheme will require the execution time
depending on not only its computational complexity but also both the service
chain requirements and remaining network capacity. In this paper, we consider
two cases in terms of the execution time: ideal case and realistic case. The
ideal case will be used to reveal the performance limit of each scheme under
no execution time. As for evaluation criteria, we define the acceptance ratio
as the ratio of the number of SCRs served successfully to the total number of
SCRs. Note that the remaining SCRs in the queue at the simulation end will
be rejected. We evaluate the computational complexity from the viewpoint of
the average execution time, which is the average amount of time spent finding
a service path per SCR. In context of queueing theory, we can interpret the
execution time as the service time. To measure how busy the system is, we
evaluate the traffic intensity ρ = λ/µ where µ denotes the average service
rate. We also evaluate the objective function, i.e., average total delay of service
paths among all accepted requests. In what follows, we show the simulation
results in the average of 50 independent simulation runs.

5.2 Optimality of Service Chaining

In this section, we first focus on the maximum performance of resource allo-
cation under the ideal case where the execution time is ignored. Fig. 4 depicts
the relationship between the arrival rate λ and total delay. We confirm that the
total delay worsens with the arrival rate λ, regardless of the schemes. This is
because the increase of λ leads to more resource consumption, which may make
the new SCR to establish a longer service path due to the capacity constraint.
We, however, observe that both the proposed heuristics approaches, i.e., the
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Fig. 4 Impact of arrival rate λ on total delay (SC under ideal case).
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Fig. 5 Impact of arrival rate λ on acceptance ratio (SC under ideal case and realistic case).

LP-based Lagrangian heuristics and DFTS-based Lagrangian one, exhibit the
total delay competitive with the CSPTP-based ILP and reduce the total delay
by 11.5–12.9 ms compared with the greedy algorithm, respectively.

Fig. 5 illustrates the relationship between the arrival rate λ and the accep-
tance ratio in the ideal case. Note that we will discuss the results in the
realistic case in Section 5.3. Simply speaking, resource allocation with low net-
work utilization will contribute to high acceptance ratio. In our problem, the
objective function is the minimization of total delay of service paths, which
will also reduce the network utilization by making the path with a less num-
ber of hop count (intermediate nodes and links). Focusing on the results in
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Fig. 6 Impact of arrival rate λ on average execution time (SC under realistic case).

the ideal case, we observe that the four schemes have similar tendency: 1) The

acceptance ratio maintains almost one in the range of λ ∈ [1, λ̂] and then, 2)

it steeply decreases with increase of λ. However, the value of λ̂ differs among
the schemes. The algorithm has λ̂ = 2 and exhibits the worst performance
while the two proposed heuristics can achieve almost the same optimal perfor-
mance as the CSPTP-based ILP. Specifically, the performance degradation of
the two proposed heuristics, i.e., LP-based Lagrangian heuristics and DFTS-
based Lagrangian one, is suppressed by 0.22% and 0.08% compared with that
of the CSPTP-based ILP, respectively.

5.3 Tradeoff between Optimality of Service Chaining and
Computational Complexity

Next, we consider the realistic case where the execution time is not negligible
and prone to change according to the schemes. Fig. 6 depicts how the arrival
rate λ affects the average execution time in the realistic case. Since the average
execution time is the average amount of time spent finding a service path
per SCR, it is almost constant regardless of the value of λ for all schemes.
Note that the total amount of execution time for serving all the arrived SCRs
can approximately be estimated as the product of λ and average execution
time, which linearly increases with λ. We also observe that the two proposed
heuristics and greedy algorithm are much faster than the CSPTP-based ILP.

We should note here that the performance degradation will be caused by
the following two factors, i.e., resource depletion or long execution time. In
Section 5.2, we only focused on the impact of resource depletion through eval-
uations under the ideal case. In what follows, we focus on the performance
degradation caused by the long execution time. Fig. 5 illustrates impact of
the arrival rate λ on the acceptance ratio in the realistic case, in addition to
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Fig. 7 Relationship between the arrival rate λ and traffic intensity ρ (SC under realistic
case).

that in the ideal case. Different from the result in the ideal case, we observe
that the acceptance ratio of the CSPTP-based ILP in the realistic case dras-
tically decreases when λ ≥ 3. This is caused by the heavily loaded state of the
system where the traffic intensity ρ becomes larger than one, which can be
confirmed through the relationship between the arrival rate λ and traffic inten-
sity ρ, as shown in Fig. 7. On the contrary, we find that the greedy algorithm
shows almost the same performance in both the ideal and realistic cases, which
implies that the performance degradation of greedy algorithm comes from the
resource depletion. As for the two proposed heuristics in the realistic case, we
confirm that they can perform well as in the ideal case by achieving efficient
resource allocation in a speedy manner.

6 Numerical Results of Service Chaining and
Function Placement

In this section, we evaluate the solution optimality and computational com-
plexity of the proposed heuristics in terms of SCFP. In the calculation, we
used the same server used in Section 5.

6.1 Evaluation Scenario

We use the same simulator and settings in Section 5.1, except the following.
We consider the batch processing with C = 10 to evaluate the performance
of SCFP. Every 10 SCR arrivals, each of which follows a Poisson process with
λ = 8, the NFV orchestrator tries to find the optimal service paths for the C
SCRs and determine the number and locations of functions. As for the average
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Fig. 8 Impact of the number VVNF of VNF-enabled physical nodes on total delay (C = 10,
λ = 8, SCFP case).

execution time, we define it as the average amount of time spent finding service
paths per SCRs with batch size of C = 10.

In this evaluation, we assume that VNF-enabled physical nodes and legacy
ones can coexist, which will happen during the transition period from the
legacy networks to NFV networks. We assume that each VNF-enabled physical
node can execute any function f ∈ F under the capacity constraint. We change
the number VVNF of VNF-enabled physical nodes in the range of [5, V ] and
randomly select VVNF VNF-enabled physical nodes from all physical nodes.
Please note that the actual number N∗f and location(s) of VNF-enabled phys-
ical nodes possessing function f ∈ F will be determined by solving the SCFP
problem.

As mentioned in Section 3.5, the CSPTP-based ILP for SC and greedy algo-
rithm for SC can be extended to solve the SCFP by modifying the augmented
network. Similarly, the proposed heuristics can also be extended to those for
SCFP by modifying the augmented network as mentioned in Section 4.3.

6.2 Tradeoff between Optimality of Service Chaining and
Function Placement and Computational Complexity

Intuitively, the optimality of SCFP will improve with increase of the number
VVNF of VNF-enabled physical nodes at the cost of computational complexity.
In this section, we will figure out this tradeoff. Fig 8 illustrates the relation-
ship between VVNF and total delay for the four schemes. As we expected,
the increase of VVNF leads to the reduction of the total delay, regardless of
the schemes. This is because the combination of service chaining and func-
tion location can determine both the appropriate number and locations of
functions to minimize the total delay of service paths. Specifically, the total
delay drastically decreases even under small VVNF (e.g., VVNF = 30) in case
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Fig. 9 Impact of the number VVNF of VNF-enabled physical nodes on average execution
time (C = 10, λ = 8, SCFP case).
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Fig. 10 Impact of the number VVNF of VNF-enabled physical nodes on the number N∗f of

physical nodes possessing function f (C = 10, λ = 8, SCFP case).

of the proposed heuristics (i.e., the DFTS-based Lagrangian heuristics and
LP-based one), which indicates that the combination of service chaining and
function placement works well even at the early stage of transition to NFV
networks. Focusing on the performance difference among the four schemes, we
observe that the DFTS-based Lagrangian heuristics and LP-based one show
the competitive total delay with the CSPTP-based ILP and reduce the total
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Fig. 11 Impact of batch size C on average execution time (VVNF = 30, λ = 8, SCFP case).

delay by 3.09–16.96 ms and 3.09–16.97 ms compared with the greedy algorithm,
respectively.

Next, Fig. 9 depicts how the number VVNF of VNF-enabled physical nodes
affects the average execution time. As we expected, the increase of VVNF leads
to the increase of the execution time in all schemes. (The average execution
time of the greedy algorithm also shows the slight increase with respect to
VVNF.) The proposed heuristics and greedy algorithm achieve smaller aver-
age execution time than the CSPTP-based ILP. Specifically, the DFTS-based
Lagrangian heuristics (resp. the LP-based Lagrangian heuristics) can reduce
the average execution time by 46.8% (resp. 52.5%) compared with the CSPTP-
based ILP even in case of VVNF = 200 while keeping the solution optimality,
as shown in Fig. 8. The greedy algorithm shows the smallest average execution
time at the sacrifice of solution optimality.

Finally, Fig. 10 illustrates how the four schemes adjust the number N∗f of
physical nodes possessing function f (f ∈ F) by changing the number VVNF

of VNF-enabled physical nodes. We first confirm that the four schemes can
supply each function according to the corresponding demand given in Table 4,
regardless of VVNF. We also observe that N∗f increases with VVNF. This is
because the total delay (i.e., objective function) can be reduced by allocating
more instances (copies) of the same function to more VNF-enabled physical
nodes, as shown in Fig. 8.

6.3 Impact of Batch Size on Average Execution Time of
Service Chaining and Function Placement

As mentioned in Section 3.6, the combination of SCFP is suitable for batch
processing because it can achieve more effective resource allocation at the cost
of longer execution time, compared with SC. Fig. 11 depicts the impact of
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batch size C on average execution time. We observe that the average execution
time increases with increase of C, regardless of the schemes.

We observe that the DFTS-based (resp. LP-based) Lagrangian heuristics
can reduce the average execution time up to 91.5% (resp. 69.0%) compared
with the CSPTP-based ILP. The DFTS-based Lagrangian heuristics shows
longer (resp. smaller) average execution time than the the LP-based one when
1 ≤ C < 3 (resp. 3 ≤ C ≤ 10). This comes from the difference of the parallel
computing architectures between them. In case of the LP-based Lagrangian
heuristics, CPLEX is used as the solver, which can search for optimal service
paths for all SCRs with benefit of parallel computing. On the contrary, the
DFTS-based Lagrangian heuristics adopts OpenMPI to calculate the optimal
service path per SCR in parallel, which indicates that the benefit of parallel
computing only arises when C becomes large.

7 Conclusion

In this paper, we have proposed the two types of the Lagrangian heuristics
for the speedy and efficient service chaining (SC), i.e., the linear program-
ming (LP) based one and the depth first tour search (DFTS) based one, by
integrating the several existing techniques, i.e., Lagrangian relaxation, linear
relaxation, shortest path tour algorithm called DFTS, and subgradient algo-
rithm. In terms of the LP-based Lagrangian heuristics, we have proved that
the Lagrangian problem of the original capacitated shortest path tour prob-
lem (CSPTP)-based ILP has a totally unimodular constraint matrix, which
guarantees the integrality of the decision variables even under the linear relax-
ation. Furthermore, we have shown that the proposed heuristics can also solve
both the service chaining and function placement (SCFP) by extending the
augmented network.

Through the numerical results of the online SC, we have shown that the
proposed heuristics can perform almost the optimal resource allocation with
much smaller execution time, compared with the combination of the CSPTP-
based ILP and the existing solver, i.e., CPLEX. In the evaluations of SCFP, we
have demonstrated that the proposed heuristics can still balance the solution
optimality and computational complexity, thanks to the parallel computation
architectures.
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