
On Practicality of Kernel Packet Processing
Empowered by Lightweight Neural Network and

Decision Tree
Takanori Hara

Graduate School of Science and Technology
Nara Institute of Science and Technology

Ikoma, Japan
hara@ieee.org

Masahiro Sasabe
Faculty of Informatics

Kansai University
Takatsuki, Japan

m-sasabe@ieee.org

Abstract—Kernel packet processing such as extended Berkeley
Packet Filter (eBPF) and eXpress Data Path (XDP) is a promising
framework that can speedily/efficiently process packets without
passing them to conventional packet processing software running
on the user space. Several studies pointed out the possibility of
eBPF empowered by simple machine learning techniques (e.g.,
decision tree (DT)) to realize intelligent packet processing (e.g.,
intrusion detection) in the kernel space. Note that the quantitative
evaluation of both packet processing and detection performance
has not been conducted sufficiently. In addition, to ensure the
kernel stability and safety, the eBPF program must process
packets under strict constraints such as prohibition of floating-
point number, which is usually used in neural networks (NNs).
In this paper, we examine the possibility of NN-empowered
eBPF/XDP based packet processing. More specifically, we first
train a floating-point NN and quantize it as a fixed-point NN
using 8-bit integers in the user space. Then, we implement
the lightweight NN in the eBPF/XDP program to achieve fast
packet processing with integer-arithmetic-only inference in the
kernel space. Experimental results show that (1) the integer-
arithmetic-only NN (resp. DT) classifier can drastically reduce
the inference time to 15.3% (resp. 1.6%) while suppressing
degradation of classification performance, (2) the lightweight NN
classifier can improve the inference performance in case of multi-
class classification, and (3) the kernel-based method with NN
(resp. DT) classifier can process received packets in a real-time
manner under a certain transmission rate, i.e., 300,000 pps (resp.
450,000 pps).

Index Terms—Kernel packet processing, extended Berkeley
Packet Filter (eBPF), eXpress Data Path (XDP), intrusion detec-
tion system (IDS), machine learning (ML), quantization, fixed-
point neural network (NN).

I. INTRODUCTION

The extended Berkeley Packet Filter (eBPF) framework can
control a Linux kernel through an arbitrary program [1]. This
technology not only improves the observability of kernel logs
but also enables faster packet processing on the kernel [2].
In eBPF-based networking, when a new packet arrives at
a network interface, the eBPF can process it according to
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predefined processing rules. For example, the eBPF program
can record the packets only on TCP port 80 and drop the
packets received only from a certain IP address. The eXpress
Data Path (XDP) is also one of the Linux kernel frameworks
for fast programmable packet processing [2], [3]. It runs an
eBPF program at the network driver, which is the closest point
to the network interface.

Recently, machine learning (ML) has been applied to
various domains in networking [4]. Application of ML can
realize intelligent networking such as automation of network
operations and recognition of traffic characteristics. For ex-
ample, there have been ML-based intrusion detection systems
(IDSs) [5], [6], most of which can successfully improve the
detection accuracy of attacks. Note that these programs are
designed to run on the user space. In [7], the authors proposed
a flow-based IDS using the eBPF program, which adopts
the decision tree (DT) algorithm. In addition, they showed
that the DT-empowered eBPF program has higher processing
efficiency than the conventional program running on the user
space.

Although eBPF is a promising framework, it also has several
challenging issues. Since eBPF programs are designed to run
on the kernel, they must run on a single thread and restricted
by various kinds of strict constraints to ensure the kernel
stability and safety [2], [8]. These constraints include the limits
on the number of instructions and stack space, the prohibitions
against unbounded loops, non-static global variables, variadic
functions, and floating-point numbers, and the array bound
checking. Table I summarizes these constraints, which are not
concerned in the user-space programs. The details of these
constraints will be described in Section III-B.

These constraints make the eBPF program difficult to
execute conventional ML approaches, which are originally
designed to run on the user space. In [7], the authors realized
the flow-based IDS using the eBPF program empowered by
the 64-bit fixed-point (integer) DT algorithm. In this paper, we
newly examine the possibility of eBPF/XDP packet processing
empowered by a neural network (NN), which is one of the
most common ML methods. Similarly to [7], we adopt a flow-
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TABLE I: Constraints in eBPF (kernel-space) programming and there relation to user-space programming.

Constraint User space eBPF (Kernel space) Alternatives in eBPF
Unbounded loop Supported Not supported Bounded loop
Floating-point number Supported Not supported Fixed-point number
Non-static global variables Supported Not supported BPF map
Variadic functions Supported Not supported -
Multi-threaded programming Supported Not supported Single-threaded programming
Array bound checking Not required Required -
Maximum number of instructions Not limited 1 million since kernel version 5.1 -
Maximum number of branches Not limited 8192 -
Maximum stack space 8192 KB (default) 512 bytes Tail call, BPF map, and quantization

based IDS as a case study. More specifically, we adopt a multi-
layer perceptron (MLP) as a floating-point NN classifier. We
first train the floating-point NN classifier with high accuracy
and quantize it as a fixed-point NN one using 8-bit integers in
the user space. Then, we implement the quantized fixed-point
NN classifier in the eBPF/XDP program, which realizes fast
packet processing with integer-arithmetic-only inference in the
kernel space.

Another important concern in ML-empowered eBPF/XDP
packet processing is the relationship between processing speed
and resource efficiency. From the viewpoint of high-speed
packet processing, kernel bypassing methods, represented by
Data Plane Development Kit (DPDK) [9], are one of the
promising approaches. They can almost achieve the theoretical
performance limit of packet processing with the help of multi-
threaded accelerators in the user space, at the cost of CPU-
intensive polling of packets even under no packet arrival. On
the contrary, an eBPF program runs on a single thread in
the kernel space, which limits the packet processing speed
but achieves high resource efficiency (i.e., CPU utilization
proportional to packet arrival rate). In this paper, we quan-
titatively reveal the potential of ML-empowered eBPF/XDP
packet processing for IDS, in terms of packet processing
speed, resource efficiency, and detection performance.

Experimental results will show that (1) the integer-
arithmetic-only NN (resp. DT) classifier running on the kernel
space can reduce the inference time to 15.3% (resp. 1.6%)
while suppressing degradation of classification performance
compared with the floating-point NN (resp. DT) running on
the user space, and (2) the kernel-based method with NN
(resp. DT) classifier can process received packets in a real-
time manner under a certain transmission rate, i.e., 300,000 pps
(resp. 450,000 pps).

The rest of the manuscript is organized as follows. Section II
gives the related work. In Section III, we introduce some
preliminaries. In Section IV, we propose the NN-empowered
eBPF for packet processing. Section V shows the fundamental
characteristics of the proposed method. Finally, Section VI
gives the conclusion and future work.

II. RELATED WORK

There have been studies on eBPF-based networking in terms
of performance analysis [3], packet filtering [10], virtual net-
work functions [11], service chaining [12], and IPv6 segment
routing [13]. In [3], the authors focused on XDP. They revealed

the performance limit of XDP through the comparison with
DPDK [9] and network stack on the Linux kernel. DPDK,
which is one of the kernel bypassing methods, can almost
achieve the theoretical limit of packet processing performance
using multi-threaded accelerators in the user space [6], [9],
[14]. As a result, it also has a potential drawback of CPU-
intensive polling of packets even under no packet arrival. On
the contrary, the kernel-based methods such as eBPF and XDP
cannot utilize the multi-threading property to ensure the kernel
stability and safety. Note that they can achieve highly resource-
efficient packet processing proportional to packet arrival rate
and coexist with the kernel network stack. In this paper, we
focus on the lightweight eBPF approach to realize energy-
efficient edge computing. The recent eBPF-related survey can
be found in [15].

Applying ML to networking has been expected to realize
automation of network operations and recognition of traffic
characteristics [4]. For example, there have been studies on
ML-based IDSs to improve the detection performance [5],
[6]. As for IDSs, there are several datasets reflecting the
current trends of attacks [16], [17]. There have been studies
on fast packet processing architectures using a programmable
hardware accelerator [18]–[21]. These architectures can miti-
gate the packet processing overhead by offloading the CPU-
intensive tasks to the dedicated hardware. There are other
studies on implementing NN-based IDSs using the DPDK
library, which realize fast packet processing at the expense
of a large amount of computational resources [6], [14]. In
recent years, several studies focused on the applicability of
ML to eBPF [7], [22]. In [22], the authors presented only
the concept of an IDS with both eBPF and ML. In [7], the
authors proposed a flow-based IDS by implementing the DT
algorithm on the eBPF program. However, these existing stud-
ies did not sufficiently reveal the possibility of the eBPF/XDP
program with the NN, which is one of the most popular ML
methods. In this paper, we mainly focus on the possibility
of eBPF/XDP packet processing empowered by a lightweight
NN for the IDS. To the best of our knowledge, this is the first
work on anomaly packet detection using the NN-empowered
eBPF/XDP.

Due to the above-mentioned eBPF constraints, ML-
empowered eBPF has several challenging issues. To ensure the
kernel stability and safety, eBPF programs must run on a single
thread and adopt special variables, which require array bound
checking. On the contrary, conventional programs running
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Fig. 1: eBPF workflow.

on the user space do not have such constraints but suffer
overhead from packet between the kernel and user spaces.
This overhead becomes the bottleneck because the passing
process runs on a single thread. In [7], the authors showed
that the DT-empowered eBPF program has higher processing
efficiency than the conventional program running on the user
space. In this paper, we quantitatively reveal the potential of
eBPF/XDP packet processing empowered by ML (i.e., NN
or DT), compared with the conventional program running on
the user space in terms of packet processing speed, resource
efficiency, and detection performance.

There are two challenging issues to adopt the NN archi-
tecture to eBPF-based packet processing: (1) inference speed
and (2) model size. As for the inference speed, there have
been many studies on accelerating the NN inference [23]–[25].
The fixed-point NN is one of the approaches for accelerating
the NN inference, which represents the data type of the NN
as the fixed-point (integer) type [24]. As for the model size,
many studies adopted the quantization approaches to reduce
the model size and memory usage, which is one of the NN
compression approaches [24], [25]. The quantization converts
the data type used in the NN architecture (i.e., weight param-
eters and input values) into the low-bitwidth data type (e.g.,
converting the 32-bit floating-point number (float32) to 8-bit
integer number (int8)), which can reduce the model size to 1/4
with a risk of performance degradation of inference. Focusing
on these characteristics, we expect that the fixed-point NN and
the quantization method have a key role to overcome the eBPF
constraints. By integrating these approaches, we implement the
integer-only lightweight NNs in the eBPF/XDP program.

III. PRELIMINARIES

A. eBPF Workflow

Fig. 1 illustrates the eBPF workflow. An eBPF program
must be verified by an eBPF verifier to check the violation of
eBPF constraints before its injection into the kernel code, so as
to avoid crashes and infinite loops. More specifically, an eBPF
program written in a restricted C language is first converted
into the corresponding eBPF byte code by a compiler in the

user space. After this eBPF byte code is verified by the eBPF
verifier, it is further converted into a native instruction set by
a Just-In-Time (JIT) compiler. The converted eBPF program
runs as efficiently as any other kernel code and kernel module
(dotted lines in Fig. 1). Finally, the eBPF program is attached
to an arbitrary event point (dashed lines in Fig. 1). When the
attached event (e.g., the packet arrival) occurs, the eBPF/XDP
program is executed (solid lines in Fig. 1).

Traffic control (TC) is an architecture to schedule traffic
on the kernel and processes arrival packets via sk buff [26].
sk buff is a metadata structure to access the packet data in the
buffer. TC consists of the queuing discipline (qdisc) and the
classifier. The qdisc is a scheduler to schedule, classify, filter,
and shape packets outgoing to an interface. It enqueues packets
to be transmitted into the queuing buffer and processes them.
Then, it dequeues the packets from the queuing buffer and
passes them to the network driver. cls bpf is a programmable
classifier, which can attach the eBPF program to TC ingress
and egress. In other words, the cls bpf enables the eBPF
program to process both incoming and outgoing packets.

The XDP program is a special case of the eBPF program,
which realizes the programmable fast packet processing at the
closest point (i.e., network driver) to the network interface
card (NIC) [2], [3]. Similarly to the eBPF program, the XDP
program is strictly restricted to ensure the kernel stability
and safety. Therefore, it is also difficult to execute the ML-
empowered program, which requires floating-point arithmetic
with large model size, on the kernel space. The (native) XDP
attaches the eBPF program to the network driver and conducts
high-performance packet processing before passing the packets
from sk buff. Different from TC, XDP only supports the
incoming packets and requires the dedicated network driver to
execute the XDP program. Recently, the generic XDP has been
proposed to execute the XDP program without the dedicated
network driver by passing the packets through a kernel stack
emulating the XDP functionality at the sacrifice of packet
processing speed [27]. The generic XDP processes the packets
immediately after passing the packets from sk buff.

B. eBPF Constraints

An eBPF program is written in a restricted C language.
The main eBPF constraints can be summarized in Table I.
To ensure the kernel stability and safety, the eBPF program
must run on a single thread. Since all instructions must be
designed in the integer arithmetic, the eBPF program must
adopt the fixed-point number instead of the floating-point
number. The maximum number of instructions per eBPF
program is restricted to 1 million BPF instructions and the
maximum number of branches caused by jump instructions is
limited to 8192. The maximum stack space of eBPF program
is restricted to 512 bytes, which is much smaller than the
default value 8192 KB of the maximum stack space in the
user space. The eBPF framework provides a mechanism called
tail call to alleviate the problem of stack space limitation.
An eBPF program can call another one through a tail call,
which does not return to the caller. Note that the maximum
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number of tail calls is limited to 32. A BPF map is a key-
value store sharing data between the user and kernel spaces,
which can be in substitution for non-static global variables.
Quantization techniques, which make the size of NN smaller,
can also be used to alleviate the problem of stack space
limitation. These constraints prevent the conventional use-
space programs from running as eBPF programs and make
the eBPF programs difficult to execute the conventional ML
approaches. In addition, they may cause the performance
degradation when checking boundary values of arrays.

C. CIC-IDS2017 Dataset

In this paper, we adopt the CIC-IDS2017 dataset [17], which
has commonly been used for the IDS performance, as in
[7]. The CIC-IDS2017 dataset contains the information about
normal packets and six types of attack packets i.e., botnet,
brute force, DoS, infiltration, portscan, and web attack. The
total amount of packet capture data is more than 50 GB. In this
paper, we assume that each packet belongs to a certain flow,
which is defined as 5-tuple packet information of source and
destination IP addresses, source and destination port numbers.
The total number of flows becomes 2,315,197 where the
number of normal (resp. attack) flows is 1,729,999, (resp.
585,198). In [7], the authors conducted feature selection to
improve the performance of attack detection. As a result, they
showed that the flow arrival time and packet length are the
important features.

D. Quantization

Quantization is a process of converting the data type used
in the NN architecture into the low-bitwidth data type. For
instance, the 8-bit quantization transforms the 32-bit floating-
point NN (float32) into the 8-bit integer NN (int8), which can
reduce the model size and its memory usage to 1/4. From
the viewpoint of eBPF/XDP program, the quantization can
increase the possibility to satisfy the stack space limit.

Scale quantization [28], which is one of the quantization
schemes, maps a real value x ∈ [−α, α] into a b-bit signed
integer value xq ∈ [−2b−1 + 1, 2b−1 − 1] as follows:

xq = clip(round(σx),−2b−1 + 1, 2b−1 − 1), (1)

where σ = (2b−1 − 1)/α denotes a scale factor, round(x) is
a function to round the value x, and clip(x, y, z) is a function
that outputs x, y, z for z ≤ x ≤ y, x < y, and z > x,
respectively.

On the contrary, dequantization tries to restore the quantized
the b-bit signed integer value xq to the original value x′, which
can be defined as follows:

x′ = σ−1xq. (2)

There can be an error between the dequantized value x′ and
the original one x.

Post-training quantization (PTQ) aims at quantizing the
learned model by determining the quantized parameters of the
learned model’s weights and activations [29]. To suppress the
inference performance degradation of the quantized model as

much as possible, we need to adjust the quantized parameter
α. This is done by the calibration, which adjusts the quantized
parameter α for the inputs and weights in an offline manner
such that Kullback-Leibler (KL) divergence [30] between the
original distribution and quantized one is minimized.

We assume that a fully-connected layer performs matrix
multiplication, i.e., Y = XW, where Y = (yn,m) ∈ RN×M

is an output matrix, X = (xn,k) ∈ RN×K is an input
matrix, and W = (wk,m) ∈ RK×M is a weight matrix. In
case of the scale quantization, the output matrix Y can be
approximated to the matrix multiplication of the dequantized
matrices Xq = (xq,n,k) ∈ ZN×K and Wq = (wq,k,m) ∈
ZK×M by using the scale factors σ = (σn,k) ∈ RN×K and
σweight = (σweight,k,m) ∈ RK×M :

yn,m =
∑
k∈K

xn,k · wk,m ≈
∑
k∈K

xq,n,k · wq,k,m

σn,kσweight,k,m
,

where σn,k and σweight,k,m denote the scale factor of xn,k and
that of wk,m, respectively.

To control the balance between the model accuracy and
computational complexity, we can adjust α in a different quan-
tization granularity. The quantization with the finest granular-
ity prepares individual quantization parameters for all elements
of the matrix. The quantization with the coarsest granularity
shares one quantization parameter among all elements of the
matrix. The quantization with the moderate granularity shares
one quantization parameter per one or more columns of the
matrix.

E. Integer-arithmetic-only Neural Network

In general, an MLP is constructed by a floating-point NN,
which cannot be supported by the eBPF/XDP program. There-
fore, we need to convert the floating-point NN into the fixed-
point one. Here, the fixed-point number can be represented
by an integer value in which the lower n bits are treated as
the decimal part [23]. More specifically, a floating-point value
xfloat can be converted into the fixed-point value xfixed with
the lower n bits of decimal part according to the following
equation:

xfixed = round(xfloat · (1 << n)). (3)

In Eq. (3), the fixed-point value xfixed is obtained by mul-
tiplying xfloat and 2n, which is realized by n-bit shift left
operation, and then rounding the decimal part by the round()
function.

IV. NN-EMPOWERED EBPF-BASED PACKET PROCESSING

A. Overview

Given a large amount of training data, each of which is a
pair of a D-dimensional feature vector x = (x1, . . . , xD) ∈ X
and the target score y ∈ Y , an NN aims at representing a
function f such that y = f(x). More specifically, the function
f is expressed by an NN with the fully-connected layers
where the weight parameters are adjusted by the training data.
In general, the weight parameters are expressed by floating-
point numbers. Due to the eBPF constraints aforementioned
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Fig. 2: Workflow of the proposed scheme.

before, we cannot directly implement the floating-point NN
in the eBPF/XDP program. In addition, since the eBPF/XDP
program should be lightweight and fast, we need to transform
the floating-point NN to the 8-bit fixed-point (integer) NN to
reduce the learned model size.

In this paper, we attempt to solve this problem by combining
highly accurate and flexible learning in the user space and
lightweight and fast inference with the eBPF/XDP program
in the kernel space. In particular, we realize the lightweight
and fast inference by ML on the eBPF/XDP program by
(1) applying the PTQ-based 8-bit quantization to the learned
model in the user space (See the details in Section IV-B.) and
(2) performing the integer-arithmetic-only NN in the kernel
space (See the details in Section IV-C). In what follows, we
consider two types of classification: binary classification and
multi-class classification. Note that the integer-arithmetic-only
NN designed for the eBPF program is compatible with that
for the XDP program. Fig. 2 illustrates the workflow of the
proposed scheme.

B. Learning and Quantization of Neural Network in User
Space

In this paper, we adopt supervised learning and realize a
classification model as an NN classifier, which estimates the
type of an arrival packet, i.e., normal/attack in the binary
classification and the seven labels in the multi-class classi-
fication. We realize the NN classifier as an NN with L = 3
layers plus one input layer, where each of the outputs at lth
(l = 1, . . . , L−1) hidden layer employs an activation function
of a rectified linear unit (ReLU) function.

The dimension Ml of the lth layer is set to be M0 = D,
M1 = 16, M2 = 16, and ML = Mclass, respectively, where
l = 0 is used to represent the input layer and Mclass means the
number of outputs, i.e., Mclass = 2 for the binary classification
and Mclass = 7 for the multi-class classification. In what
follows, we mainly explain the binary classification.

We first explain how to generate the learned model in the
user space. As for the training data, we adopt the D = 12
float64 features, where the source and destination port num-
bers, protocol number, packet length, and packet direction are
denoted by x1–x5, which are directly obtained from CIC-
IDS2017 dataset, and the remaining are statistically calculated
per flow. (See the details in Section IV-C.) The packet direction
x5 takes one if the packet is an incoming packet and zero

otherwise. Since each feature xi ∈ x has the different
representation range, we apply the min-max normalization to
each feature xi ∈ x by using the corresponding normalization
parameter si.

Here, we define s = (s1, . . . , sD). Since the D-dimensional
normalization parameter s will be used for the inference in the
kernel space, it is stored in the BPF map. In the user space,
we use a set X of features and a set Y of target scores in the
training data as inputs and train the NN classifier by updating
weight parameters {W(l)}1≤l≤Lwith the help of the backprop-
agation method [31]. The lth layer operation can be interpreted
as the matrix multiplication Y(l) = X(l) · W(l), where
X(l) = (xi,j) ∈ RN×Ml−1 , W(l) = (wi,j) ∈ RMl−1×Ml ,
Y(l) = (yi,j) ∈ RN×Ml are the input, weight, and output
matrices of the lth layer, respectively. Note that N means the
batch size. After updating W(l) of every lth layer, we can
obtain the learned model (step u1 in Fig. 2).

Next, we introduce how to derive the information required
for the NN classifier running as the eBPF/XDP program
in the kernel space (step u2 in Fig. 2). The details of the
NN-empowered eBPF/XDP program will be described in
Section IV-C. We first quantize the parameters required for
the learned NN classifier. For each layer l (l = 1, . . . , L),
we obtain the quantization parameter of X(l) by adopting
the quantization with the coarsest granularity, which shares
one quantization parameter among all elements of X(l). More
specifically, we first adjust the quantization parameter α(l)

of X(l) such that the KL-divergence between the original
distribution and quantized one, with the help of the calibration.
Next, the scale factor σ(l) of X(l) is calculated, which is used
to convert float64 into int8 by Eq. (1).

Similarly, for each layer l (l = 1, . . . , L), we quantize the
weight matrix W(l) of the learned model. In case of the weight
matrix W(l), we adopt the quantization with the moderate
granularity, which shares one quantization parameter per col-
umn of W(l). More specifically, we first adjust the quanti-
zation parameters α

(l)
weight = (α

(l)
weight,j) ∈ RMl of W(l) by

minimizing the KL divergence between the original distribu-
tion and quantized one, where j means a column index. Next,
we calculate the scale factors σ

(l)
weight = (σ

(l)
weight,j) ∈ RMl of

W(l), which are used to convert float32 into int8. Finally, we
quantize the weight matrix W(l) by σ

(l)
weight and obtain the

quantized weight matrix W
(l)
q = (wq,i,j) ∈ RMl−1×Ml .

These parameters (i.e., the D-dimensional normalization pa-
rameter s, the scale factors {σ(l)}1≤l≤L and {σ(l)

weight}1≤l≤L,
and the quantized weight matrix {W(l)

q }1≤l≤L) are stored in
the BPF map such that they can be used by the NN classifier
running on the kernel space (step u3 in Fig. 2). Note that
these learned parameters can also be applied to the eBPF/XDP
program through the BPF map in a real-time manner.

C. Fast Inference with eBPF and Neural Network in Kernel
Space

We can realize the lightweight and fast NN classifier as the
eBPF/XDP program running on the kernel space by integrating
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both the quantized learned model and the integer-arithmetic-
only inference. The NN classifier running on the kernel space
refers to the parameters s, {σ(l)}1≤l≤L, {σ(l)

weight}1≤l≤L, and
{W(l)

q }1≤l≤L defined in the user space through the BPF map.
In what follows, each variable is represented by a 64 bit integer
fixed-point number (int64) with the lower 16-bit decimal part.

The eBPF/XDP program performs the integer-arithmetic-
only inference whenever a new packet arrives at the network
interface (step k1 in Fig. 2). It manages the flow by aggregating
arrival packets with help of the BPF map. To manage the
flows, the BPF map stores a collection V = {vk}∀k∈K
of per-flow values, each of which is referenced by a key
(flow ID) k ∈ K and a mapping function h : K → V .
Note that K and V denote a set of keys and that of values,
respectively. Here, the key k is the 5-tuple packet information
of source and destination IP addresses ips and ipd, source
and destination port numbers ports and portd, and protocol
number proto, i.e., k = ⟨ips, ipd, ports, portd, proto⟩. The
corresponding value vk is the 5-tuple flow-related information
of last packet arrival time tlast, total sum of packet length len,
total sum of packet direction direction, total sum of packet
arrival interval interval, and number of packets num, i.e.,
vk = ⟨tlast, len, direction, interval, num⟩.

The eBPF/XDP program first extracts source and destina-
tion IP addresses, source and destination port numbers, and
protocol number from the header of received packet, and then
generates the corresponding key k. It then obtains the value
vk from the BPF map using the key k. If it successfully
obtains the corresponding value vk from the BPF map, it
updates vk according to the arrival time t and information
(x1, . . . , x5) of received packet. Since (x1, . . . , x5) in the IP
packet header and t are represented by the integer values
(int), they are transformed into the fixed-point numbers using
64-bit integer values (int64) by Eq. (3). After updating the
BPF map, it further derives (x6, . . . , x12) according to the
following rules: x6 = t− tlast, len += x4, direction += x5,
interval += t − tlast, tlast = t, x7 = len/num, x8 =
direction/num, x9 = interval/num, x10 = abs(x4 − x7),
x11 = abs(x5 − x8), and x12 = abs(x6 − x9), where the
abs(x) function gives the absolute value of x, i.e., |x|. If
the eBPF/XDP program cannot find the value vk in the BPF
map, it records k and vk into the BPF map and then derives
(x6, . . . , x12) in the same way (steps k2 and k3 in Fig 2). (Note
that the flow-related information recorded in the BPF map can
also be used as the training data.) The eBPF/XDP program
normalizes the matrix X(0) = ((x1, . . . , x12)) ∈ R1×M0 by
using the D-dimensional normalization parameter s (step k4
in Fig. 2).

Given the normalized X(0), the NN classifier performs the
integer-arithmetic-only inference in the kernel space (step k5
in Fig. 2). For each layer l (l = 1, . . . , L), it first quantizes the
lth input matrix X(l) and obtains the 8-bit quantized matrix
X

(l)
q by the scale factor σ(l) according to Eq. (1) (step k5-

1 in Fig. 2). It then performs the matrix multiplication of
the 8-bit quantized input matrix X

(l)
q and the 8-bit quan-

tized weight matrix W
(l)
q to obtain the 8-bit output matrix

Y
(l)
q = X

(l)
q ·W(l)

q (step k5-2 in Fig. 2). Next, it dequantizes
Y

(l)
q by the scale factor σ(l)σ

(l)
weight according to Eq. (2) and

obtains X(l+1) = Y(l) by applying the activation function in
the lth layer (l = 1, . . . , L−1) (steps k5-3 and k5-4 in Fig. 2).
After repeating these procedures for all layers l (l = 1, . . . , L),
it obtains Y(L) = (y

(L)
1 , . . . , y

(L)
ML

). Finally, it obtains the
classification result m∗ = arg max

m∈{0,...,ML−1}
y
(L)
m+1 (step k6 in

Fig. 2). In case of the binary classification (ML = 2), the NN
classifier classifies the received packet as the normal (resp.
abnormal) packet if m∗ = 0 (resp. m∗ = 1). In case of the
multi-class classification (ML = 7), it outputs one of the seven
label indices.

V. EVALUATION

In this section, we evaluate the potential of eBPF/XDP
packet processing empowered by the NN and DT, respectively,
through the comparison with the conventional program run-
ning on the user space, in terms of classification performance,
packet processing speed, and resource efficiency.

A. Classifier Performance

1) Evaluation Scenario: We first evaluate the performance
of NN classifier in terms of inference performance and speed.
As for this evaluation, we use the computation server with Intel
Xeon Gold 5317 CPU (24 core), 64 GB memory, Intel Ethernet
Converged Network Adapter 710X, and Ubuntu 20.04.1 LTS
(kernel version 5.15). We divide the CIC-IDS2017 dataset into
the testing, training, and validation dataset, where the testing
dataset is assigned to 33% of the dataset and the remaining part
is further divided into the training one (80%) and validation
one (20%).

In what follows, we compare the NN classifier with DT
one. To confirm the inference performance limit, we cre-
ate the learned model by using the Python language. More
specifically, we train the ML classifiers (i.e., NN and DT
classifiers) by using the training data defined by the 64-
bit floating-point number (float64), respectively. The learned
NN (resp. DT) classifier is implemented by Pytorch [32]
(resp. scikit-learn [33]). In the training phase, we use the
Adam optimizer [34] with the initial learning rate of 10−3.
To evaluate the performance of ML classifiers running on
the kernel space, we implement them using the restricted C
language and train them according to the training data defined
by the 64-bit integer fixed-point number (int64). We implement
the DT classifier according to [7] and set the tree depth to be 5.
Note that the DT classifier does not require the quantization
process. As for the inference performance, we evaluate the
accuracy, precision, recall, and f1-score of ML classifiers. In
addition, we evaluate the inference speed by the inference time
per packet, which is measured in the user space.

2) Binary Classification Performance: We first focus on the
binary classification performance for attack packets with label
index 1, as shown in Table II. We confirm that the Python-
based implementation (i.e., NN (Pytorch) and DT (sklearn)
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TABLE II: Binary classification performance.

Classifier Accuracy Precision Recall F1 score Inference
time [µs]

DT (sklearn) 0.976 0.957 0.946 0.952 52.88
NN (Pytorch) 0.981 0.962 0.962 0.962 46.09
DT (C) 0.977 0.944 0.964 0.954 0.86
NN (C) 0.975 0.928 0.979 0.952 6.38

Client Server

eth0 eth0 Kernel

Userspace

Device 

driver
Userspace

hping3
Ethernet cable (10Gbps)

XDP_DRV XDP_SKB/TC

Rawsocket

Fig. 3: Network environment.

classifiers) perform high inference performance in terms of
accuracy, precision, recall, and f1-score. As for the C-based
implementation (i.e., NN (C) and DT (C)), DT (C) keeps
the inference performance even under the fixed-point number
arithmetic. On the other hand, NN (C) shows the slight
decrease of inference performance, due to both fixed-point
number arithmetic and quantization. Focusing on the inference
time, we confirm that NN (C) and DT (C) reduce the inference
time to 13.8% and 1.7% compared with NN (Pytorch) and
DT (sklearn), respectively. These results indicate that the DT
classifier is suitable for a simple task such as detecting the
abnormal packet, compared with the NN one. In Section V-B,
we will further evaluate the impact of inference overhead on
packet processing performance.

3) Multi-Class Classification Performance: Table III
presents the multi-class classification performance. Focusing
on the overall performance, i.e., accuracy and inference time,
we observe that the multi-class classification results show a
similar tendency to the binary classification ones. In particular,
the C-based implementation (i.e., NN (C) and DT (C)) can
reduce the inference time to 15.3% and 1.6% while suppress-
ing the accuracy degradation by 3.7% and 2.5%, compared
with the Python-based implementation (i.e., NN (Pytorch) and
DT (sklearn)), respectively. This is because the same reason
mentioned in Section V-A2.

Next, focusing on the inference performance of the individ-
ual labels, we confirm that the rich representation capabilities
of NNs contribute to improving the inference performance
for most of the attacks. More specifically, we observe the
following characteristics: (1) Both NN and DT work well to
classify DoS and Portscan as well as Normal, (2) NN can
drastically improve the inference performance for Botnet and
Brute force, compared with DT, and (3) DT is slightly effective
to detect Infiltration compared with NN. However, we also
observe that both NN and DT completely fail to detect Web
attack. This may be caused by the insufficient feature selection
and/or imbalanced data, which will be further examined in
future work.

B. Packet Processing Performance

1) Evaluation Scenario: In this section, we evaluate the
packet processing performance under the ML classification.

Fig. 3 illustrates the network environments built on the two
nodes, i.e., client and server, to evaluate the packet pro-
cessing performance. The client is with Intel Core i9-12900
CPU (24 core), 64 GB memory, Marvell AQtion AQC113, and
Ubuntu 20.04.1 LTS. On the other hand, the server is the same
computation server used in the evaluation of Section V-A1. We
restrict the number of CPUs of the server to one by the chcpu
command. Recall that the eBPF and XDP programs are single-
threaded programs. We send TCP packets from the client to
the server for 100 s by using hping3 [35]. We select hping3 for
evaluations because it tends to be used for executing DoS and
Portscan attacks. Since hping3 can control the packet sending
interval Is in the order of microseconds, we change Is in the
range of [0, 10]µs. Note that the setting of Is = 0 results in
the upper limit of packet sending rate, i.e., about 800,000 pps.
We measure the packet sending (resp. receiving) rate RTX

(resp. RRX), which is the number of outgoing (resp. incoming)
packets from the network interface eth0 of the client (resp. to
the program of the server) per second. The packets arriving
at the network interface eth0 of the server are processed.

To evaluate the performance limit of each classifier, we
compare three kinds of native XDP (XDP DRV) methods,
each of which applies the XDP program to the device driver
on the network interface eth0 of the server. XDP DRV (Flow
Extraction) appiles the XDP program that only aggregates the
received packets into the corresponding flow. XDP DRV (NN)
and XDP DRV (DT) apply the XDP program that has the
NN and DT classifiers for binary classification, respectively,
in addition to the flow extraction function. To confirm the
performance limit of packet processing, we further prepare
No Filter, which does not apply the XDP or eBPF program.

To evaluate the impact of packet processing mechanisms,
we additionally prepare TC (NN), XDP SKB (NN), and
Rawsocket (NN) by applying the NN classifier to the ingress of
TC, generic XDP, and rawsocket, respectively. TC (NN) (resp.
XDP SKB (NN)) attaches the eBPF (resp. XDP) program with
the NN classifier to the ingress of TC (resp. generic XDP)
on eth0 of the server. On the other hand, Rawsocket (NN)
applies the NN classifiers to the raw packet obtained from
the socket in the user space. We implement each eBPF/XDP
program by using the BPF Compiler Collection [36], which is
one of the helper tools for eBPF. As for Rawsocket (NN), we
also implement the rawsocket-based packet processing in the
C language. We prepare two types of Rawsocket (NN): 1-core
Rawsocket (NN) and 24-core Rawsocket (NN). 1-core (resp.
24-core) Rawsocket (NN) runs with 1-core CPU (resp. 24-
core CPU.) Note that we consider 1-core/24-core Rawsocket
(NN) under the single-threaded packet passing between kernel
and user spaces. The performance comparison with the multi-
threaded kernel bypassing methods will be future work.

2) Throughput Analysis: Fig. 4 illustrates the impact of
RTX on RRX among three classifiers and packet processing
mechanisms. Fig 5 illustrates the impact of RTX on CPU
utilization. In Fig 5, usr and sys mean the CPU utilization
caused by the application overhead in the user space and that
in the kernel space. soft means the CPU utilization caused by
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TABLE III: Multi-class classification performance.

Scheme DT (sklearn) NN (Pytorch) DT (C) NN (C)
Label Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
Botnet 1.0 0.070 0.130 0.930 0.879 0.904 1.0 0.066 0.124 0.929 0.868 0.898
Brute force 0.0 0.0 0.0 0.874 0.873 0.873 0.0 0.0 0.0 0.924 0.699 0.796
DoS 0.998 0.965 0.980 0.971 0.996 0.983 0.998 0.752 0.858 0.990 0.806 0.888
Infiltration 0.746 0.675 0.709 0.902 0.619 0.734 0.896 0.665 0.764 0.599 0.639 0.618
Normal 0.980 0.987 0.984 0.987 0.988 0.987 0.944 0.993 0.968 0.952 0.973 0.963
Portscan 0.882 0.942 0.911 0.871 0.951 0.910 0.882 0.985 0.930 0.857 0.973 0.912
Web attack 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Accuracy 0.969 0.974 0.944 0.937
Inference
time [µs] 52.73 45.53 0.876 6.96
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Fig. 5: Impact of RTX on the CPU utilization.

the software interruption and idle is the unused CPU ratio.
Note that sys and soft are overheads induced by the kernel.
Recall that No Filter gives the performance limit.

We observe from Fig. 4 that all methods show similar
tendency: 1) RRX is competitive with the performance limit in
the range of RTX = [0, R̂TX] and 2) RRX eventually saturates
or drops with further increase of RTX. The value of R̂TX is,
however, different among the classifiers and packet process-
ing mechanisms. We first focus on the impact of RTX on
RRX among three schemes. XDP DRV (Flow Extraction) has
R̂TX ≈ 450,000 and shows 11.7% performance degradation
from the performance limit when R̂TX ≈ 800,000. XDP DRV

(NN) (resp. XDP DRV (DT)) has R̂TX ≈ 300,000 (resp.
R̂TX ≈ 450,000) and shows 56.1% (resp. 22.6%) performance
degradation from the performance limit when R̂TX ≈ 800,000.
The performance degradation mainly comes from lack of CPU
resource, as shown in Fig. 5a. In other words, the XDP packet
processing empowered by NN (resp. DT) can work well under
moderate packet sending rate.

Next, we focus on the impact of RTX on RRX among
packet processing mechanisms for NN classifier. Focusing on
the kernel-based methods, we confirm that XDP SKB (NN)
and TC (NN) show the same tendency as XDP DRV (NN).
Although XDP DRV (NN), XDP SKB (NN), and TC (NN)
have the higher packet processing performance in this order,
their differences are limited, indicating that the special XDP
hardware is not necessarily required for the ML-empowered
packet processing. On the other hand, 1-core Rawsocket (NN)
running on the user space has R̂TX ≈ 200,000, which is
smaller than those of kernel-based methods. It also shows
performance degradation when RTX > R̂TX, due to lack of
CPU resource, as shown in Fig. 5b. Comparing Figs. 5a with
5b, we confirm that 1-core Rawsocket (NN) requires more
CPU resource than the kernel-based methods, which is caused
by the overhead of packet passing between kernel space and
user space.

Since above-mentioned methods are single-threaded pro-
grams, we finally examine the contribution of multi-threaded
NN computation in the user space. We observe from Fig. 4
that 24-core Rawsocket (NN) can achieve competitive packet
processing performance with the kernel-based methods, at
the expense of more CPU cores. Please note that the per-
formance of 24-core Rawsocket (NN) is still limited, due
to the bottleneck of single-threaded packet passing between
kernel space and user space. The kernel bypassing methods
will overcome this bottleneck but they will show full CPU
utilization, regardless of RTX.

VI. CONCLUSION

In this paper, we have examined the practicality of combi-
nation of kernel packet processing and machine learning for
flow-based intrusion detection system (IDS). As for the kernel
packet processing, we have focused on extended Berkeley
Packet Filter (eBPF) and eXpress Data Path (XDP). Inspired
by the existing decision tree (DT) empowered eBPF program,
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we have newly proposed a lightweight neural network (NN)
applicable to eBPF/XDP programs. More specifically, we have
trained the NN with high accuracy and quantized the learned
model to obtain the lightweight NN in the user space. We
have further implemented the quantized fixed point NN, as so
to realize the fast packet processing with integer-arithmetic-
only inference in the kernel space.

Through the experiments for binary classification and multi-
class one, we have demonstrated that the integer-arithmetic-
only lightweight NN and DT classifiers drastically reduce
the inference time to 13.8% and 1.7% while suppressing the
inference performance degradation compared with the floating-
point ones in the user space, with the help of the fixed-point
arithmetic and the quantization. In addition, the NN classifier
can improve the inference performance for most of the attacks
thanks to its rich representation capabilities in case of the
multi-class classification. Furthermore, we have unveiled the
eBPF/XDP program with the NN (resp. DT) classifier can
process received packets in a real-time manner under a certain
transmission rate, i.e., 300,000 pps (resp. 450,000 pps).

In future work, we plan to reconsider the way to improve
the inference performance (e.g., feature selection) under the
eBPF constraints and investigate the generalization capabilities
using other datasets. Quantitative comparison between kernel-
based methods and kernel-bypassing methods (e.g., Data Plane
Development Kit (DPDK)) is also one of the future directions.
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