
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Emerging Communication Technologies in Conjunction with Main Topics of ICETC2020
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SUMMARY Traffic congestion in road networks has been studied as
the congestion game in game theory. In the existing work, the road usage
by each agent was assumed to be static during the whole time horizon
of the agent’s travel, as in the classical congestion game. This assumption,
however, should be reconsidered because each agent sequentially uses roads
composing the route. In this paper, we propose a multi-agent distributed
route selection scheme based on a gradient descent method considering the
time-dependency among agents’ road usage for vehicular networks. The
proposed scheme first estimates the time-dependent flow on each road by
considering the agents’ probabilistic occupation under the first-in-first-out
(FIFO) policy. Then, it calculates the optimal route choice probability of
each route candidate using the gradient descent method and the estimated
time-dependent flow. Each agent finally selects one route according to
the optimal route choice probabilities. We first prove that the proposed
scheme can exponentially converge to the steady-state at the convergence
rate inversely proportional to the product of the number of agents and that of
individual route candidates. Through simulations under a grid-like network
and a real road network, we show that the proposed scheme can improve
the actual travel time by 5.1% and 2.5% compared with the conventional
static-flow based approach, respectively.
key words: Multi-agent distributed route selection; time-dependent flow;
gradient descent method; road network; vehicular networks

1. Introduction

It has been well-known that the traffic congestion problem
can be modeled as a congestion game in game theory by re-
garding roads as resources. Since the route selection of one
agent results in the use of roads composing the correspond-
ing route, the route selection of all agents determines the
assignment of agents to roads, which will finally determine
the travel time of each agent. It is rational for each agent to
select a route that seems to have the minimum travel time
from its route candidates. Such route selection is called self-
ish routing and results in a Wardrop equilibrium where each
agent cannot reduce its travel time by changing the route [2],
[3].

Since the classical congestion game assumes that each
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player can select one or more resources at the same time, its
straightforward extension to the traffic congestion problems
also assumes the static flow where each agent simultaneously
uses the roads composing of its route during the whole time
horizon of its travel [3], [4]. However, in case of the road
networks, each agent moves along with the route, which
indicates that the agent will sequentially use the roads in the
route.

Ford and Fulkerson introduced the concept of flow over
time to deal with the congestion over time [5], [6]. They also
proposed a time-expanded network that contains one copy
of the static network for each discrete time step. The time-
expanded network enables us to use the algorithms designed
for the static flow assumption at the expense of the enormous
network size. Koch and Skutella studied the characteristics
of Nash equilibria and the price of anarchy for the flow over
time by using the deterministic queuing model [7]. The
deterministic queuing model is also used in other studies
to investigate the impact of the competition on the network
efficiency [8]–[11].

Lim and Rus proposed a distributed route selection
scheme for each agent under the assumption of the classical
congestion game [12]. In [12], each agent in the road net-
work autonomously calculates the route choice probabilities
for its route candidates by using a gradient descent method
such that its expected travel time is minimized. This scheme
regards the route choice probability of each agent as the frac-
tional flow under the assumption that the number of agents
on the road network is sufficiently large. As a result, the flow
on a road can be expressed by the probabilistic occupation
for agents [13]–[15].

In this paper, we propose a multi-agent distributed route
selection scheme considering the time dependency among
agents’ road usage. The proposed scheme comprises of the
following two procedures. First one is the estimation of the
time-dependent competitive relationship among agents con-
sidering a time dependency among agents’ road usage. Sec-
ond one is the distributed route selection based on a gradient
descent method with the time-dependent flow information,
which is an expanded version of the existing scheme in [12].

The main contributions of the paper are as follows:

1. We propose a multi-agent route selection considering
the time dependency among agents’ road usage in a
distributed manner.
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2. Through simulations under a grid-like road network
and a real one, we show that the proposed scheme can
improve the actual travel time by 5.1% and 2.5% com-
pared with the existing scheme [12], with the help of
the accurate estimation of the congestion levels.

3. We prove that the proposed scheme can exponentially
converge to the steady-state at the convergence rate in-
versely proportional to the product of the number of
agents and that of individual route candidates. The
convergence property is also confirmed through numer-
ical results.

The rest of the paper is organized as follows. Section 2
gives related work. We introduce the multi-agent distributed
route selection scheme considering the time dependency
among agents’ road usage in Section 3. Section 4 demon-
strates the performance of the proposed scheme through the
numerical and simulation results. Section 5 gives the con-
clusion and the future work.

2. Related Work

With the help of the classical congestion game, Lim and Rus
proposed the multi-agent distributed route selection scheme
under the assumption of the static flow [12]. This scheme in-
terprets the route choice probability of each agent as the frac-
tional flow under the assumption that the number of agents
is sufficiently large. As a result, the flow on a road can be
expressed by the agents’ probabilistic occupation [13]–[15].
Each agent autonomously calculates the optimal route choice
probabilities for its route candidates such that its travel time
will be minimized. Note that the authors proved that each
agent’s rational route selection results in the Wardrop equi-
librium.

Ford and Fulkerson first introduced the concept of the
flow over time and the time-expanded network [5], [6]. In
contrast to the static flow, the flow over time assumes that
the flow on a road dynamically changes. The time-expanded
network contains one copy of the static network for each
discrete time step. The flow over time in the static network
can be interpreted as the static flow in the time-expanded
network. Such time-expanded network uses the fixed travel
time of the road under the assumption that the capacity of
the edge limits the flow into the edge at each time step [16].
Köhler et al. proposed a time-expanded graph for the flow-
dependent transit time [17].

Some existing studies proved the existence of Nash equi-
libria for flow over time [7], [8]. Anshelevich and Ukkusuri
showed the existence of Nash equilibria in single-source
single-sink network where the traffic obeys the first-in-first-
out (FIFO) policy [8]. Koch and Skutella introduced the
congestion game with flow over time by using a determinis-
tic queuing model [7]. In the deterministic queuing model,
the traffic is regarded as the flow particles (infinitesimal flow
units). The travel time of each road consists of the fixed
transit time plus the waiting time. The fixed transit time
means the time that a flow particle needs to travel from the

tail to the head of the road. If the traffic demand exceeds
the road capacity, flow particles queue up at the end of the
road in the FIFO manner. In [9]–[11], the authors stud-
ied the complexity properties under the competitive routing
over time, Braess’s paradox over time, and Stackelberg strat-
egy over time, respectively. In this paper, we consider the
time-dependent competitive relationship among agents in a
different way compared with the time-expanded network and
the deterministic queuing model.

There were several studies on predictive traffic conges-
tion model [18], [19]. Kong et al. proposed an approach for
urban traffic congestion prediction and estimation by using
the floating car trajectory data [18]. Fouladgar et al. pro-
posed an urban traffic congestion prediction scheme using
a deep neural network for modeling traffic flow [19]. Such
predictive traffic congestion models would help the proposed
scheme to estimate the time-dependent flow more accurately.

The congestion-aware routing using traffic data was also
studied [20], [21]. Afshar-Nadjafi and Afshar-Nadjafi for-
mulated a mixed integer problem for time-dependent vehicle
routing to minimize the travel cost and proposed the heuristic
algorithm [20]. Rossi et al. addressed the congestion-aware
routing for autonomous vehicles and proposed an optimiza-
tion method to minimize the congestion by allocating empty
vehicles to non-crowded routes in a capacitated road net-
work [21].

3. Distributed Route Selection under Consideration of
Time Dependency among Agents’ Road Usage

In this section, we propose a multi-agent distributed route
selection scheme considering the time dependency of the
agents’ road usage, which is an extended version of the ex-
isting scheme [12].

3.1 Preliminaries

𝐺 = (V, E) denotes a graph representing the internal struc-
ture of the road network, where V denotes a set of vertices
(i.e., intersections) and E denotes a set of edges (i.e., roads).
There are 𝑁 (𝑁 > 0) agents (e.g., vehicles) in the road net-
work and N = {1, . . . , 𝑁} denotes a set of agents. Each
agent 𝑖 ∈ N first calculates 𝐾𝑖 (𝐾𝑖 > 0) candidate routes
𝝅𝑖 = (𝜋𝑖1, . . . , 𝜋𝑖𝐾𝑖 ) where route 𝜋𝑖𝑘 is the agent 𝑖’s 𝑘th
route candidate, which is a vector of edges consisting of the
corresponding route. Let K𝑖 = {1, . . . , 𝐾𝑖} be a set of the
corresponding route indices.

Next, each agent 𝑖 ∈ N calculates route choice prob-
abilities 𝒑𝑖 = (𝑝𝑖1, . . . , 𝑝𝑖𝐾𝑖 )T where 𝑝𝑖𝑘 (0 ≤ 𝑝𝑖𝑘 ≤ 1)
denotes the probability that agent 𝑖 selects the 𝑘th route.
Note that

∑
𝑘∈K𝑖 𝑝𝑖𝑘 = 1 and 𝒑𝑖 can also be regarded as

the mixed strategy in game theory [22]. We assume that
each agent 𝑖 ∈ N collects the route choice probabilities 𝒑 𝑗
of competing agents 𝑗 ∈ N𝑖 through communication net-
works e.g., cellular networks and vehicular networks. (The
definition of N𝑖 will be given in Section 3.2.) Then, each
agent 𝑖 calculate 𝒑𝑖 using a gradient descent method and 𝒑 𝑗
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(b) Time-dependent flow case.

Fig. 1: Probabilistic occupation of road 𝑒 by corresponding agent’ routes.

Table 1: Notations.
Symbol Description
𝐺 A directed graph representing road network 𝐺 = (V , E)
V A set of vertices
E A set of edges
N A set of agents, 𝑁 = |N |
𝝅𝑖 A vector of route candidates for agent 𝑖, (𝜋𝑖1, . . . , 𝜋𝑖𝐾𝑖 )
𝒑𝑖 A vector of route choice probabilities for agent 𝑖,

(𝑝𝑖1, . . . , 𝑝𝑖𝐾𝑖 )
K𝑖 A set of indices of routes for agent 𝑖, {1, . . . , 𝐾𝑖 }
C𝑒 A set of routes that include road 𝑒
C𝑖𝑘𝑒 A set of routes that include road 𝑒 where the probabilistic

occupation by agents following that route
𝑓𝑒 Flow of road 𝑒
𝑐𝑒 ( ·) Cost of road 𝑒
𝑐𝑖𝑘 Cost of route 𝜋𝑖𝑘
𝑡𝑒 Estimated travel time of road 𝑒
𝑡𝑒 Travel time without any congestion on road 𝑒
𝑡𝑖𝑘𝑒 Inflow time when the agent 𝑖 following 𝜋𝑖𝑘 enters road 𝑒
𝑓 𝑖𝑘𝑒 The time-dependent flow on the road 𝑒 for the agent 𝑖’s

route 𝜋𝑖𝑘
𝑘∗𝑖 Index of the minimum cost route for agent 𝑖
N𝑖 Competitors of agent 𝑖
𝐼M Calculation interval
𝑉𝑖 Local cost
𝑉 Global cost
𝑤𝑖𝑘 Local cost increase of the route 𝜋𝑖𝑘
𝑦𝑖𝑘 Processed version of 𝑤𝑖𝑘
1T
𝐾𝑖

Column vector of size 𝐾𝑖 with all elements set to be 1
𝒆𝑘∗𝑖

Column vector of size 𝐾𝑖 with 𝑘∗𝑖 th element set to be 1
𝛾 Learning rate
𝜏 Iteration time of algorithm execution
𝑣𝑖 Moving speed for the agent 𝑖
𝑑𝑒 Length of road 𝑒
𝑡𝑒 ( ·) Travel time of road 𝑒
𝑐𝑒 Capacity of road 𝑒
𝛼, 𝛽 Parameter representing the degree of the traffic congestion
�̂�∗𝑖 Deterministic version of 𝒑∗𝑖 where 𝑘∗𝑖 th element

is set to be 1 and the remaining elements are set to be 0
𝑇𝑖 Actual travel time of the agent 𝑖
�̃�𝑖 Estimated travel time of the agent 𝑖

( 𝑗 ∈ N𝑖). Finally, each agent 𝑖 selects a certain route, 𝜋𝑖𝑘∗ ,
according to the route choice probabilities 𝒑𝑖 . We assume
that the route calculation is periodically conducted at a cer-
tain interval 𝐼M (𝐼M > 0) to suppress the estimation error
and adapt to environmental changes, e.g., new agent arrivals.

If the number of agents is large, we can regard the route
choice probability 𝑝𝑖𝑘 (𝑖 ∈ N , 𝑘 ∈ K𝑖) as the fractional

flow as in [13], [23], [24]. Therefore, the flow on a road
can also be interpreted as the probabilistic occupation by the
corresponding agent’ route. In the classical congestion game,
the probabilistic occupation of a road is assumed to be static
during the whole time horizon of the agent’s travel [13]–[15].
Fig 1 illustrates an example of the probabilistic occupation
of road 𝑒 by four agents’ routes (i.e., {𝜋11, 𝜋21, 𝜋31, 𝜋41}). In
case of the static flow assumption (Fig. 1a), the flow on road
𝑒, 𝑓𝑒, is defined as the sum of the corresponding route choice
probabilities:

𝑓𝑒 =
∑
𝜋 𝑗𝑙∈C𝑒

𝑝 𝑗𝑙 ,

where C𝑒 denotes a set of each agent’s route that includes
road 𝑒. Table 1 summarizes the notations used in this paper.

3.2 Time Dependency among Agents’ Road Usage

Since each agent travels along a route, its probabilistic occu-
pation of each road composing that route will sequentially
happen as shown in Fig. 1b. In this case, the static flow
assumption, where all the roads composing the route are
simultaneously and continuously used, should be reconsid-
ered. When the agent 1 following the route 𝜋11 just enters
the road 𝑒 at the time 𝑡11

𝑒 , the agent 2 following the route 𝜋21
is only the leading competitor on the road 𝑒. Then, the agent
1 will have the agent 3 as its follower on the road 𝑒 at its
arrival on the road 𝑒 at the time 𝑡31

𝑒 . Note that the agent 1’s
movement on the road 𝑒 will be affected only by its leading
agent, i.e., agent 2.

As a result, we can define a set of time-dependent com-
petitive routes of the road 𝑒 for the agent 𝑖 following the route
𝜋𝑖𝑘 :

C𝑖𝑘𝑒 = {𝜋 𝑗𝑙 ∈ C𝑒 | 𝑡 𝑗𝑙𝑒 ≤ 𝑡𝑖𝑘𝑒 ≤ 𝑡 𝑗𝑙𝑒 + �̃�𝑒}. (1)

𝑡𝑖𝑘𝑒 denotes the inflow time when the agent 𝑖 following 𝜋𝑖𝑘
enters road 𝑒. �̃�𝑒 denotes the estimated travel time on the
road 𝑒. (The estimation method will be discussed in the
next section.) 𝑡

𝑗𝑙
𝑒 + �̃�𝑒 denotes the outflow time when the

agent 𝑗 following 𝜋 𝑗𝑙 exits the road 𝑒. The condition 𝑡 𝑗𝑙𝑒 ≤
𝑡𝑖𝑘𝑒 ≤ 𝑡 𝑗𝑙𝑒 + �̃�𝑒 guarantees that the agent 𝑗 following 𝜋 𝑗𝑙 leads
the agent 𝑖 following 𝜋𝑖𝑘 on the road 𝑒, and thus becomes
the competitor. Note that this model assumes that all agents
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obey the FIFO policy and C𝑖𝑘𝑒 does not change until the agent
𝑖 following 𝜋𝑖𝑘 exits the road 𝑒. Using C𝑖𝑘𝑒 , we can express
the time-dependent flow on the road 𝑒 for the agent 𝑖’s route
𝜋𝑖𝑘 .

𝑓 𝑖𝑘𝑒 =
∑

𝜋 𝑗𝑙∈C𝑖𝑘𝑒

𝑝 𝑗𝑙 . (2)

Furthermore, the competitors of the agent 𝑖 ∈ N can be
defined as the following set:

N𝑖 = { 𝑗 ∈ N \ {𝑖} | ∃𝑙 ∈ K 𝑗 , 𝜋 𝑗𝑙 ∈ ∪𝑘∈K𝑖C𝑖𝑘𝑒 }.

Each agent 𝑖 collects the route choice probabilities 𝒑 𝑗 of
competitors 𝑗 ∈ N𝑖 through communication networks.

3.3 Distributed Route Selection under Consideration of
Time-Dependent Road Usage

In this section, we show how the distributed route selection
scheme calculates the optimal route choice probability under
the consideration of the time dependency among agents.

The cost of route 𝜋𝑖𝑘 for agent 𝑖 can be expressed by the
sum of cost of each road along route 𝜋𝑖𝑘 .

𝑐𝑖𝑘 =
∑

∀𝑒∈𝜋𝑖𝑘
𝑐𝑒 ( 𝑓 𝑖𝑘𝑒 ),

where 𝑐𝑒 (·) denotes the cost of the road 𝑒 under the flow
𝑓 𝑖𝑘𝑒 , which is a non-decreasing function. From Eqs. (1) and
(2), we should note here that 𝑐𝑒 (·) depends on �̃�𝑒. This is
a kind of the chicken or egg situations, and thus it is hard
to obtain accurate �̃�𝑒 for each road 𝑒 ∈ E before calculating
the path cost 𝑐𝑖𝑘 (𝑖 ∈ N , 𝑘 ∈ K𝑖). In this paper, we simply
regard �̃�𝑒 as the lower bound of travel time on the road 𝑒, 𝑡𝑒,
which is the travel time without any congestion on the road
𝑒. In Section 4.1.2, we will show this simple assumption
contributes to the congestion alleviation but we also plan to
apply more sophisticated estimation methods [18], [19].

We assume that each agent 𝑖 ∈ N measures the good-
ness of the current route choice probabilities 𝒑𝑖 based on the
local cost 𝑉𝑖 [12]:

𝑉𝑖 =
∑
𝑘∈K𝑖

𝑝𝑖𝑘𝑐𝑖𝑘 − 𝑐𝑖𝑘∗𝑖 =
∑
𝑘∈K𝑖

𝑝𝑖𝑘 (𝑐𝑖𝑘 − 𝑐𝑖𝑘∗𝑖 ), (3)

where 𝑘∗𝑖 = arg min
𝑘∈K𝑖

𝑐𝑖𝑘 . Eq. (3) means the difference be-

tween the expected path cost under 𝒑𝑖 and the minimum
path cost. It is rational for each agent 𝑖 to aim at adjusting
the route choice probabilities 𝒑𝑖 such that 𝑉𝑖 approaches to
0. 𝑉𝑖 = 0 leads to the following two conditions of Wardrop
equilibrium [12]:

𝑐𝑖𝑘 = 𝑐𝑖𝑘∗𝑖 , if 𝑝𝑖𝑘 > 0,
𝑐𝑖𝑘 ≥ 𝑐𝑖𝑘∗𝑖 , otherwise.

The first condition means that each agent 𝑖 ∈ N selects
the minimum-cost path while the second one indicates that

unselected paths have equal or larger cost than the minimum
cost.

The global cost𝑉 is defined as the sum of the local cost
𝑉𝑖 of all agents 𝑖 ∈ N [12]:

𝑉 =
∑
𝑖∈N

𝑉𝑖 .

When each agent 𝑖 aims to adjust 𝒑𝑖 such that 𝑉𝑖 approaches
to 0,𝑉 also converges to 0. As a result, Wardrop equilibrium
is achieved among all agents.

In [12], a distributed gradient controller is proposed,
in which each agent 𝑖 ∈ N can control 𝒑𝑖 such that 𝑉𝑖 = 0
in a distributed manner. The distributed gradient controller
governs the time derivative of the route choice probabilities
using the competitors’ current route choice probabilities.
We propose the multi-agent distributed gradient controller
considering the time dependency of the agents’ road usage,
which is the extended version of the existing scheme [12].

We can obtain the local cost increase of the route 𝜋𝑖𝑘 ,
𝑤𝑖𝑘 , by a small change in 𝑝𝑖𝑘 :

𝑤𝑖𝑘 =
∑
𝑗∈N𝑖

𝜕𝑉 𝑗

𝜕𝑝𝑖𝑘
. (4)

From Eq. (3), the local cost increase of agent 𝑗 by the small
change in 𝑝𝑖𝑘 , 𝜕𝑉 𝑗/𝜕𝑝𝑖𝑘 , can be expressed by

𝜕𝑉 𝑗

𝜕𝑝𝑖𝑘
=

𝜕

𝜕𝑝𝑖𝑘

∑
∀𝑙∈K 𝑗\{𝑘∗𝑗 }

𝑝 𝑗𝑙 (𝑐 𝑗𝑙 − 𝑐 𝑗𝑘∗𝑗 )

=



∑
∀𝑙∈K 𝑗\{𝑘∗𝑗 }

𝑝 𝑗𝑙

(
𝜕𝑐 𝑗𝑙

𝜕𝑝𝑖𝑘
−
𝜕𝑐 𝑗𝑘∗𝑗

𝜕𝑝𝑖𝑘

)
, if 𝑖 ≠ 𝑗 ,

𝑐𝑖𝑘 − 𝑐𝑖𝑘∗𝑖 +
∑

∀𝑙∈K𝑖\{𝑘∗𝑖 }
𝑝𝑖𝑙

(
𝜕𝑐𝑖𝑙
𝜕𝑝𝑖𝑘

−
𝜕𝑐𝑖𝑘∗𝑖
𝜕𝑝𝑖𝑘

)
, if 𝑖 = 𝑗 .

The cost increase of 𝜋 𝑗𝑙 by the small change in 𝑝𝑖𝑘 ,
𝜕𝑐 𝑗𝑙/𝜕𝑝𝑖𝑘 , is expressed by the sum of each edge’s cost in-
crease. Since the small change in 𝑝𝑖𝑘 only affects the cost of
edges shared by both 𝜋𝑖𝑘 and 𝜋 𝑗𝑙 , we can express 𝜕𝑐 𝑗𝑙/𝜕𝑝𝑖𝑘
as follows:

𝜕𝑐 𝑗𝑙

𝜕𝑝𝑖𝑘
=

∑
𝑒∈𝜋𝑖𝑘∩𝜋 𝑗𝑙

I(𝜋𝑖𝑘 ∈ C 𝑗𝑙𝑒 ) 𝜕𝑐𝑒 ( 𝑓
𝑗𝑙
𝑒 )

𝜕 𝑓

−
∑

𝑒∈𝜋𝑖𝑘∗
𝑖
∩𝜋 𝑗𝑙
I(𝜋𝑖𝑘∗𝑖 ∈ C 𝑗𝑙𝑒 ) 𝜕𝑐𝑒 ( 𝑓

𝑗𝑙
𝑒 )

𝜕 𝑓
, (5)

where I(·) denotes an indicator function. The right-hand
side of the equation denotes the sum of the cost derivative
in the edge level when the corresponding route is included
in the set of time-dependent competitive routes of the road
𝑒 for the agent 𝑗 following the route 𝜋 𝑗𝑙 . Note that 𝑝𝑖𝑘∗𝑖 may
also change depending on the small change in 𝑝𝑖𝑘 .

As in [12], we can finally obtain the following dis-
tributed gradient controller per unit time of 𝜏 (𝜏 > 0):
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𝑑 𝒑𝑖
𝑑𝜏

= −𝛾𝑉𝑖
𝒚𝑖 − (1T

𝐾𝑖
𝒚𝑖)𝒆𝑘∗𝑖

| |𝒚𝑖 | |2
. (6)

𝛾 (𝛾 > 0) denotes a learning rate. 1𝐾𝑖 denotes a column
vector of size 𝐾𝑖 with all elements set to be 1. 𝒆𝑘∗𝑖 denotes
a column vector of size 𝐾𝑖 , where 𝑘∗𝑖 th element is set to
be 1 and the remaining elements are set to be 0. 𝒚𝑖 =
(𝑦𝑖1, . . . , 𝑦𝑖𝐾𝑖 )T is defined as follows for 𝑘 ≠ 𝑘∗𝑖 :

𝑦𝑖𝑘 =

{
0 if 𝑝𝑖𝑘 = 0, 𝑤𝑖𝑘 > 0 or 𝑝𝑖𝑘 = 1, 𝑤𝑖𝑘 < 0,
𝑤𝑖𝑘 otherwise.

(7)

When each agent 𝑖 ∈ N adjusts 𝒑𝑖 according to Eq. (6),
the global cost 𝑉 reaches to zero, and thus the Wardrop
equilibrium is achieved.

3.4 Convergence Analysis

In this section, we show that the proposed scheme expo-
nentially converges to the steady-state as in the conventional
scheme [12]. For simplicity, we assume that K𝑖 = K and
𝐾𝑖 = 𝐾 .

Theorem 1. The global cost𝑉 (𝜏) exponentially decreases at
the convergence rate inversely proportional to the product of
the number of agents and that of individual route candidates
(i.e., 𝑁𝐾) under the distributed controller in Eq. (6).

Proof. The time derivative of 𝑉 can be expressed by

𝑑𝑉

𝑑𝜏
=

1
𝑁𝐾

∑
𝑖∈N

∑
𝑘∈K

𝜕𝑉

𝜕𝑝𝑖𝑘
· 𝜕𝑝𝑖𝑘
𝜕𝜏

=
1
𝑁𝐾

∑
𝑖∈N

(
𝜕𝑉

𝜕 𝒑𝑖

)T 𝑑 𝒑𝑖
𝑑𝜏

.

From Eq. (6), this can be rewritten as follows:

𝑑𝑉

𝑑𝜏
=

1
𝑁𝐾

∑
𝑖∈N

(
𝜕𝑉

𝜕 𝒑𝑖

)T
(
−𝛾𝑉𝑖

𝒚𝑖 − (1T
𝐾𝑖
𝒚𝑖)𝒆𝑘∗𝑖

| |𝒚𝑖 | |2

)

= − 𝛾

𝑁𝐾

∑
𝑖∈N

𝑉𝑖
©«
∑
𝑗∈N

𝜕𝑉 𝑗

𝜕 𝒑𝑖

ª®¬
T (

𝒚𝑖 − (1T
𝐾𝑖
𝒚𝑖)𝒆𝑘∗𝑖

| |𝒚𝑖 | |2

)
. (8)

The nonzero elements of vector 𝒚𝑖 except for 𝑘∗𝑖 th element are
equal to

∑
𝑗∈N 𝜕𝑉 𝑗/𝜕 𝒑𝑖 from Eqs. (4) and (7). In addition,

𝑘∗𝑖 th element of
∑
𝑗∈N 𝜕𝑉 𝑗/𝜕 𝒑𝑖 becomes 0. Note that we

assume the competitive relation among agents, i.e., C𝑖𝑘𝑒 (𝑖 ∈
N , 𝑘 ∈ K), is kept during the calculation. Therefore, Eq. (8)
can be rewritten as follows:

𝑑𝑉

𝑑𝜏
= − 𝛾

𝑁𝐾

∑
𝑖∈N

𝑉𝑖

(
𝒚T
𝑖 𝒚𝑖

| |𝒚𝑖 | |2

)
= − 𝛾

𝑁𝐾
𝑉. (9)

Solving the differential equation (9) in terms of 𝜏, we have

𝑉 (𝜏) = 𝑉 (0) exp
(
− 𝛾

𝑁𝐾

)
,

Fig. 2: Route candidates 𝝅25 for agent 25 (blue lines) and
route candidates {𝝅 𝑗 }∀ 𝑗∈N for all agents (black lines).

where 𝑉 (0) is the initial global cost. □

4. Simulation Results

4.1 Evaluation under a Grid-like Network

In this section, we demonstrate the fundamental character-
istic of the proposed scheme through simulations using a
grid-like road network.

4.1.1 Evaluation Model

To evaluate the fundamental characteristic of the proposed
scheme, we use a grid road network consisting of 50 × 50
nodes (intersections). There are fifty agents (𝑁 = 50) and
each agent 𝑖 ∈ N travels from node (𝑖, 1) to node (𝑖, 50).
Note that (1, 1) (resp. (50, 50)) is the left-top (resp. right-
bottom) node of the grid network. We assume that travel
time of each road 𝑒 ∈ E follows the BPR function [25], i.e.,
𝑡𝑒 ( 𝑓𝑒) = 𝑡𝑒 (1 + 𝛼( 𝑓𝑒/𝑐𝑒)𝛽) where 𝑡𝑒 denotes the travel time
without any congestion on the road 𝑒, and 𝑐𝑒 denotes the
capacity of the road 𝑒. 𝛼 and 𝛽 represent the degree of the
traffic congestion. For each road 𝑒, we randomly set 𝑡𝑒 (resp.
𝑐𝑒) in the range of [0, 1] (resp. [2, 4]). We also use 𝛼 = 0.15
and 𝛽 = 4.

Each agent 𝑖 ∈ N obtains 𝐾𝑖 = 5 route candidates 𝝅𝑖
according to the following procedure. Each agent 𝑖 ∈ N
first finds the shortest route from the origin, i.e., node (𝑖, 1),
to the destination, i.e., node (𝑖, 50), when the flow of the
agent 𝑖 only exists, i.e., 𝑡𝑒 (1) = 𝑡𝑒 (1 + 𝛼(1/𝑐𝑒)𝛽). Next, it
obtains the second route candidate by calculating the shortest
route from the origin to the destination under the assumption
that the predefined number of road segments, i.e., 30, in
the route(s) found so far are unavailable. By repeating this
procedure, each agent 𝑖 ∈ N obtains 𝐾𝑖 route candidates 𝝅𝑖 ,
which are exclusive to each other as much as possible. Fig. 2
illustrates an example of route candidates for all agents and
those for agent 25 are highlighted by blue color.

As for evaluation criteria, we use the estimated travel
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Fig. 3: Congestion model.

time and the actual one. The estimated travel time for agent
𝑖, 𝑇𝑖 , is defined as the weighted sum of the travel time corre-
sponding each route 𝜋𝑖𝑘 .

𝑇𝑖 =
∑
𝑘∈K𝑖

𝑝∗𝑖𝑘

∑
𝑒∈𝜋𝑖𝑘

𝑡𝑒 ( 𝑓 𝑖𝑘𝑒 ),

where the weights are given by 𝒑∗𝑖 , which is derived by the
distributed gradient controller in Section 3. On the other
hand, the actual travel time for each agent 𝑖, 𝑇𝑖 , is the elapsed
time between arrival time to a destination and departure time
from a origin.

To obtain the actual travel time 𝑇𝑖 for each agent 𝑖 ∈
N , we implemented a Java simulator. In what follows, we
assume that the control interval 𝐼M is sufficiently large and
the route calculation is conducted once at the beginning of the
simulation. Each agent 𝑖 ∈ N first calculates the route choice
probabilities 𝒑∗𝑖 , and then selects one of the candidates, 𝑘∗𝑖 ,
according to 𝒑∗𝑖 . We define the deterministic version of 𝒑∗𝑖
as �̂�𝑖 = (𝑝𝑖1, . . . , 𝑝𝑖𝐾𝑖 )T. �̂�𝑖 is a vector of size 𝐾𝑖 where
𝑘∗𝑖 th element is set to be 1 and the remaining elements are
set to be 0.

Fig. 3 shows the congestion model used in the simulator.
There are three agents traveling in the same direction on the
road 𝑒. Suppose that the agent 𝑖 (𝑖 = 1, 2, 3) selects the
route 𝜋𝑖1. From Eq. (2), we obtain 𝑓 11

𝑒 = 𝑝11 = 1, 𝑓 21
𝑒 =

𝑝11 + 𝑝21 = 2, and 𝑓 31
𝑒 = 𝑝11 + 𝑝21 + 𝑝31 = 3, in Fig. 3a. As

a result, the agent 𝑖 moves as the speed of 𝑣𝑖 = 𝑑𝑒/𝑡𝑒 ( 𝑓 𝑖1𝑒 )
where 𝑑𝑒 is the length of the road 𝑒. When the agent 1
exists on the road 𝑒 (Fig. 3b), the time-dependent flow for
the agents 2 (resp. 3) is updated to 𝑓 21

𝑒 = 𝑝21 = 1 (resp.
𝑓 31
𝑒 = 𝑝21 + 𝑝31 = 2), and thus the corresponding speed also

changes.
For comparison purpose, we also use the conventional

scheme, which is the distributed route selection scheme
based on the classical congestion game [12], i.e., C𝑖𝑘𝑒 = C𝑒.
In what follows, we show the average of 100 independent
experiments.

4.1.2 Average and Maximum Travel Time among Agents

Table 2 shows the estimated travel time 𝑇𝑖 and the actual one
𝑇𝑖 for both schemes in terms of the average and maximum
values. We first focus on the difference between the estimated
travel time and actual one for each scheme. We observe
that the proposed scheme can more accurately estimate the
travel time than the conventional scheme. In particular, the

Table 2: Comparison between estimated travel time and
actual one (grid-like network case).

Scheme 𝑇𝑖 [min] 𝑇𝑖 [min]
avg. max. std. avg. max. std.

Proposed scheme 23.1 25.1 1.32 22.3 24.2 1.05
Conventional scheme [12] 28.0 29.8 0.87 23.5 25.9 1.17

Fig. 4: Impact of 𝑁 on the convergence property (𝐾 = 5).

relative estimation error, i.e., (𝑇𝑖 − 𝑇𝑖)/𝑇𝑖 , of the proposed
scheme is 0.036 (resp. 0.037) in case of the average (resp.
maximum) travel time, which is much smaller than that of
the conventional scheme (i.e., 0.19 (resp. 0.15) in case of the
average (resp. maximum) travel time).

Next, we focus on the performance difference between
the proposed scheme and the conventional scheme. We ob-
serve that the proposed scheme can improve the average
(resp. maximum) actual travel time by 5.1% (resp. 6.6%)
compared with the conventional scheme. The static flow
assumption used in the conventional scheme considers the
worst congestion case while the time-dependent flow as-
sumption in the proposed scheme seems to succeed in esti-
mating more possible congestion level of each road.

4.1.3 Convergence Property

Finally, we evaluate the convergence property of the pro-
posed scheme. Fig. 4 shows the transition of the global cost
𝑉 when 𝐾 = 5 and 𝑁 is set to be 10, 20, 30, 40, and 50. In
addition, Fig. 5 also depicts the transition of𝑉 when 𝑁 = 50
and 𝐾 is set to be 2, 3, 4, and 5. In these figures, we first ob-
serve that the global cost 𝑉 exponentially decreases with the
number of iteration. We also observe that the convergence
rate is inversely proportional to both the number of agents,
𝑁 , and that of individual route candidates, 𝐾 .

4.2 Evaluation under a Real Road Network

In this section, we evaluate the practicality of the proposed
scheme through simulations using a real road network, i.e.,
the central part of Nagoya city, Japan.

4.2.1 Evaluation Model

We use the digital road map of 4.7 [km] × 4.5 [km] east
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Fig. 5: Impact of 𝐾 on the convergence property (𝑁 = 50).

Fig. 6: 4.7 [km] × 4.5 [km] east area of Nagoya station in
Japan [26].

area of Nagoya station in Japan, which is provided by Japan
Digital Road Map Association [26]. The internal graph
structure is composed of 3,173 vertices and 5,013 edges
(Fig. 6). Each road on the map has attribute information, i.e.,
road length, the number of lanes, and speed limit, which can
be used for parameters, i.e., 𝑡𝑒 and 𝑐𝑒, of the BPR function.
We set 𝑡𝑒 by considering the road length and the speed limit,
and 𝑐𝑒 based on the number of lanes. As for other parameters,
we use the same settings in Section 4.1.1, i.e, 𝛼 = 0.15 and
𝛽 = 4.

For more realistic evaluation, we use the ordinary flow
of people in the target area called people flow data [27]. The
people flow data involve the number of people in the target
road network and each person’s origin and destination with
its transportation method at a certain interval, e.g., an hour.
We focus on the start of office hour, i.e., 8:00-8:59, where
1,197 vehicles exist in the road network. In what follows, we
show the average of 10 independent simulations.

4.2.2 Average and Maximum Travel Time among Agents

Table 3 presents the estimated travel time 𝑇𝑖 and the actual
one 𝑇𝑖 for both schemes in terms of average and maximum
values. We first focus on the difference between the estimated
travel time and actual one for each scheme. We observe that
the proposed scheme exhibits more accurate estimation than

Table 3: Comparison between estimated travel time and
actual one (realistic network case).

Scheme 𝑇𝑖 [min] 𝑇𝑖 [min]
avg. max. std. avg. max. std.

Proposed scheme 2.66 7.71 1.54 2.65 7.70 1.53
Conventional scheme [12] 3.49 41.2 4.04 2.72 8.07 1.60

the conventional scheme. Specifically, the relative estima-
tion error of the proposed scheme is 0.004 (resp. 0.001) in
case of average (resp. maximum) travel time, which is much
smaller than that of the conventional scheme, i.e., 0.28 (resp.
4.11) in case of average (resp. maximum) travel time.

Next, we focus on the performance difference between
the proposed scheme and conventional scheme. We confirm
that the proposed scheme can improve the average (resp.
maximum) actual travel time by 2.5% (resp. 4.6%) compared
with the conventional scheme.

5. Conclusion

In the classical routing game, all the roads composing the
route are assumed to be used simultaneously and contin-
uously. However, this assumption should be reconsidered
since the congestion level would change over time. In this pa-
per, we have proposed a multi-agent distributed route selec-
tion scheme based on a gradient descent method considering
time dependency among agents’ road usage. In the proposed
scheme, each agents calculates the route choice probabilities
by using the estimated time-dependent flow on each road in
the distributed manner. We have first proved that the pro-
posed scheme exponentially converges to the steady-state at
the convergence rate inversely proportional to the product
of the number of agents and that of individual route can-
didates. Through the simulation results under the grid-like
road network, we have shown that the proposed scheme can
improve the actual travel time by 5.1%, compared with the
conventional scheme. Furthermore, we have also evaluated
the practicality of the proposed scheme through simulations
under the realistic road network of Nagoya city. We have
confirmed that the proposed scheme can effectively estimate
traffic load and improve the actual travel time by 2.5% com-
pared with the conventional scheme.

In future work, we plan to investigate how the proposed
scheme can improve the actual travel time by controlling the
interval 𝐼M, which will contribute to increase the estimation
accuracy at the expense of the computational complexity.
In addition, we also consider to apply the existing predictive
traffic congestion models to estimate the time-dependent flow
more accurately. Combination of the proposed scheme with
the selfish yet optimal routing [28] is also a possible future
direction.
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