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Abstract—Network functions virtualization (NFV) can flexibly
deploy diverse network services by liberating network functions
from traditional network appliances and executing them as
virtual network functions (VNFs) on generic hardware. A certain
network service can be represented by a service chain, which
consists of VNFs in required order. The service chaining problem
is finding a suitable service path from the origin to the destination
such that the VNFs are executed at the intermediate nodes in the
required order under the resource constraints, which belongs to
the complexity class NP-hard. In our previous work, considering
the similarity between the service chaining problem and the
shortest path tour problem (SPTP), we formulated the service
chaining as the capacitated SPTP (CSPTP) based ILP, where
CSPTP is an extended version of the SPTP with the node and link
capacity constraints. In this paper, to address both computational
complexity and optimality of resource allocation, we propose
Lagrangian heuristics to solve the CSPTP-based ILP especially
for the online service chaining. Through simulation results, we
show that the proposed algorithm almost achieves the optimal
resource allocation with much smaller execution time compared
with the existing solver, CPLEX.

Index Terms—Network functions virtualization (NFV), service
chaining, capacitated shortest path tour problem (CSPTP), inte-
ger linear programming (ILP), Lagrangian relaxation, subgradi-
ent algorithm.

I. INTRODUCTION

Network functions virtualization (NFV) enables a commu-
nication network to provide more flexible network services by
replacing the traditional network appliances (e.g., firewall, net-
work address translation (NAT), and deep packet inspection)
with inexpensive generic hardware (e.g., high volume server)
and executing the network functions virtually on them, which
are called virtual network functions (VNFs) [1]–[4]. A certain
network service can be composed of VNFs in required order,
which is called a service chain (SC) or service function chain
(SFC) [5].

To realize a service chain from its requirements (e.g., an
origin node, a destination node, a sequence of functions, and
demand for bandwidth and processing), we need to solve a
service chaining problem, which is a kind of combinational
optimization problems. More specifically, the service chaining
problem is finding a suitable service path from the origin to the
destination such that the VNFs are executed at the intermediate
node in the required order under the resource constraints. The
service chaining problem is one of the resource allocation
problems in the NFV network [2]–[4] and belongs to the
complexity class NP-hard [6].

Recently, several studies pointed out that the service chain-
ing [7]–[10] has the same aspect as the shortest path tour
problem (SPTP) [11], [12]. The SPTP is a variant of the
shortest path problem (SPP) and aims at finding the shortest
path from an origin to a destination while traversing at least
one node from given disjoint node subsets T1, . . . , TK in this
order [13]. In [13], the author proved that the SPTP belongs
to the complexity class P. Bhat and Rouskas first pointed out
the similarity between service chaining and SPTP as well as
proposed an algorithm for finding the shortest path tour [7].

In addition to the similarity, the service chaining problem
also has a different aspect from the SPTP, i.e., constraints
on both node and link capacities. As for the constraints
on link capacities, several researchers extended the SPTP to
constrained SPTP such that the path does not use an identical
link more than once [14]–[16]. The constrained SPTP was
proved to belong to the complexity class NP-complete [14].
The problem was formulated as an integer linear program
(ILP) and Lagrangian heuristics was proposed to solve the
problem [15], [16].

In our previous work [10], we modeled the service chaining
problem as a capacitated SPTP (CSPTP), which is a general
case of the constrained SPTP, where it supports more general
constraints on both node and link capacities with real values.
We exactly formulated the CSPTP-based ILP for the service
chaining problem, with the help of the ILP formulation for
the constrained SPTP [15] and a special network model
called augmented network. The details about the augmented
network and CSPTP-based ILP formulation will be given
in Section III-B and Section III-D, respectively. The high
computational complexity of CSPTP-based service chaining
comes from the following characteristics: (1) allowing the
use of identical links as many times as needed, (2) ensuring
execution of VNFs in required order, and (3) meeting the
constraints on both node and link capacities.

To cope with the tradeoff between optimality and com-
putational complexity of service chaining, we propose a
Lagrangian-based heuristic framework to effectively solve the
CSPTP-based ILP especially for the online service chaining.
The proposed framework is a combination of several existing
techniques, i.e., the CSPTP [10], Lagrangian relaxation, the
shortest path tour algorithm [7], and a subgradient algorithm,
by taking advantage of each technique. The details of the
proposed framework will be given in Section IV. Through
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simulation results, we reveal fundamental characteristics of
the proposed heuristics from the viewpoint of optimality of
resource allocation and computational complexity.

The rest of the manuscript is organized as follows. Section II
gives the related work. In Section III, we introduce the system
model and CSPTP-based ILP for the online service chaining.
To overcome the computational complexity, we propose the
Lagrangian-based heuristic framework for solving the CSPTP-
based ILP in Section IV. Section V shows the fundamental
characteristics of the proposed algorithm. Finally, Section VI
gives the conclusions and future work.

II. RELATED WORK

The service chaining is one of the resource allocation
problems in NFV networks, which tries to find a suitable
service path that meets both resource constraints and service
chain requirements, e.g., processing/bandwidth demand and
sequential execution of functions [2]–[4]. To tackle this issue,
there are many studies on efficiently solving the service
chaining problem to achieve various objectives [10], [17]–
[21]. In addition, many studies proposed heuristic algorithms
for solving the service chaining problem from the viewpoint
of practicability [9], [10], [18]–[21]. Sun et al. formulated an
ILP for the energy-efficient and traffic-aware service chaining
in multi-domain networks and proposed a heuristic algo-
rithm [19]. Huin et al. formulated an ILP for the service
chaining problem using a layered graph to minimize the
total link utilization and proposed a heuristic algorithm [20].
Hyodo et al. formulated the function placement problem for
the service chaining as an ILP by using a layered graph and
proposed a heuristic algorithm by relaxing the visiting order
and non-loop constraints [18]. In [21], the authors formulated
an ILP for the service chaining problem using an expanded
network to minimize the total network utilization and proposed
the Lagrangian heuristic algorithms. Sallam et al. modeled
the service chaining problem as a multi-commodity maximum
flow problem using graph transformation [17]. Recent surveys
on the service chaining problem can be found in [2]–[4].

Several studies focused on the similarity between the service
chaining problem and the SPTP [7]–[10]. The SPTP aims at
finding the shortest path from an origin to a destination while
visiting at least one node from given disjoint node subsets
T1, . . . , TK in this order, which belongs to the complexity class
P [13]. Bhat and Rouskas proposed the efficient algorithm
for solving the SPTP [7]. However, this algorithm does not
consider the load and capacity of each physical node and
link. Liu et al. proposed the SPTP-based service chaining
to minimize the transmission cost by using the multi-stage
graph [9]. In [8], the authors proposed the SPTP-based online
routing algorithm for service chaining to minimize maximum
network utilization by using a potential function.

In our previous work [10], we exactly formulated the
CSPTP-based ILP for service chaining using the augmented
network. We also proposed a greedy-based heuristic algorithm
applying sequential shortest path selection, which can drasti-
cally reduce the computational complexity at the sacrifice of

the optimality of service chaining. As mentioned in Section I,
the CSPTP is the generalized version of the constrained
SPTP [14]–[16]. The constrained SPTP is a variant of the
SPTP such that the path does not use an identical link more
than once, which belongs to NP-complete [14]. As for the
constrained SPTP, Saraiva and Andrade formulated it as an
ILP and proposed a Lagrangian-based heuristic algorithm [15],
[16]. Inspired by these approaches, we will formulate the
Lagrangian dual problem of the CSPTP-based ILP for the
online service chaining. To deal with the complexity of the
CSPTP while keeping the optimality of the service chaining,
we propose a Lagrangian heuristics for the service chaining by
integrating the CSPTP [10], Lagrangian relaxation, the existing
shortest path tour algorithm [7], and a subgradient algorithm.

The network models, e.g., layered graph, expanded net-
work, and augmented network, also play an important role
to achieve effective service chaining [10], [18], [20], [21].
Both the layered graph and expanded network construct a
hierarchical network by layering the original physical networks
according to the service chain requirement [18], [20], [21]. As
a result, the number of layers increases with the number of
required functions. In addition, they also require to customize
(reconstruct) the network in response to the arrival of a new
service chain request. In contrast to them, the augmented
network is constructed by the extending the original physical
network with imaginary nodes, each of which is responsible
for the corresponding VNF and connected to physical node(s)
capable of it via a virtual link. Because the augmented network
can support arbitrary service chain requests by preparing the
imaginary nodes for all functions F , it can alleviate the
overhead of the network reconstruction, which indicates that it
is more suitable for the online service chaining. In this paper,
we adopt the augmented network to solve the online service
chaining.

III. SYSTEM MODEL

We follow the system model considered in [10]. In this
section, we briefly introduce it in terms of service chain
request, network, service path, and CSPTP-based ILP for the
online service chaining, respectively.

A. Service Chain Request

We consider the online service chaining where a
new service chain request c arriving at the NFV net-
work is immediately served by an NFV orchestrator.
Each service chain request c has requirements rc =
(oc, dc,Rc, bc, pnodec , {pfuncc,fc,k

}k=1,...,Kc
). oc (resp. dc) denotes

an origin (resp. a destination) node. Rc represents a sequence
of Kc functions in the required order, i.e., (fc,1, . . . , fc,Kc ).
bc denotes the required throughput at a constant bit rate.
pnodec (resp. pfuncc,fc,k

) is the processing capacity required for
forwarding packets (resp. executing the kth function fc,k) at
a physical node. The top part of Fig. 1 shows an example of
the service chain requirements for the service chain request c.
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Fig. 1: Overview of service chaining.

B. Network

We consider a physical network as a directed graph G =
(V, E), where V (resp. E) denotes a set of physical nodes
(resp. links). Each physical node i ∈ V (resp. each physical
link (i, j) ∈ E) has available processing capacity Pi (resp.
available bandwidth Bi,j) at the beginning of serving the
service chain request c. The NFV network supports a set of
F distinct network functions, F = {f1, . . . , fF }. Note that
the first (resp. second) function fc,1 (resp. fc,2) of service
chain request c corresponds to f1 (resp. f2) in the example
of Fig. 1. In general, the NFV network consists of two types
of physical nodes, i.e., VNF-enabled nodes VVNF and normal
one. Each VNF-enable node i ∈ VVNF can support one or
more functions Fi ⊆ F while the normal one corresponds to
a conventional router or switch only for data forwarding. In
this paper, we simply assume that all the physical nodes are
VNF-enabled nodes, i.e., V = VVNF. We further assume that
each function f ∈ F is supported by part of VNF-enabled
nodes, i.e., Nf ⊆ VVNF, where Nf = |Nf |.

To handle the CSPTP, the augmented network G+ =
(V+, E+) is constructed by extending the physical network
G with imaginary nodes V̂ and virtual links Ê in ∪ Êout. Note

that V+ = V ∪ V̂ and E+ = E ∪ Ê in ∪ Êout. An imaginary
node v̂fc,k ∈ V̂ is responsible for the execution of kth function
fc,k and is connected to physical node(s) capable of fc,k.
These connected links are called virtual links. Ê in (resp. Êout)
denotes a set of links incoming to (resp. outgoing from) an
imaginary node v̂f . Note that Ê in = {(v, v̂f ) | v ∈ Nf , v̂f ∈
V̂, f ∈ Fv} (resp. Êout = {(v̂f , v) | v̂f ∈ V̂, v ∈ Nf , f ∈
Fv}). The virtual link (v̂fc,k , v) ∈ Êout indicates that the
physical node v ∈ Nfc,k supports the function fc,k. Selecting
the virtual link (v̂fc,k , v) as a part of the service path means
that the function fc,k will be executed at the physical node v.
We also define the set of neighbors of node i as V+

i .
In contrast to the existing network models, i.e., the layered

graph and expanded network, we only need to construct one
augmented network, which can support arbitrary service chain
requests by preparing the imaginary nodes for all the functions
F , and thus we can alleviate the overhead of network construc-
tion. We present an example of the augmented network in the
middle part of Fig. 1.

C. Service Path

The service path Sc with the origin oc, destination dc, and
Rc = (fc,1, . . . , fc,Kc

) can be decomposed into a sequence
of Kc + 1 subpaths, i.e., (Sc,1, . . . ,Sc,Kc+1). Here, we define
Kc = {1, . . . ,Kc} and K+

c = {1, . . . ,Kc + 1}. The origin
node αc,k and destination node βc,k of the kth subpath are
given as follows:

(αc,k, βc,k) =


(oc, v̂fc,1), k = 1,

(v̂fc,k−1
, v̂fc,k), k = 2, . . . ,Kc,

(v̂fc,Kc
, dc), k = Kc + 1.

Each subpath does not contain any loop while the entire
service path may have loop(s). We cannot determine how many
times one link will be used in the service path before calculat-
ing the service path itself, which is one of the reasons making
the service chaining problem NP-complete. An example of the
service path is presented at the bottom part of Fig. 1.

The optimality of a service path will be evaluated by total
delay, which is expressed by the sum of propagation delay
and processing delay, where each physical link (i, j) ∈ E has
the propagation delay dlinki,j and each physical node v ∈ V has
the processing delay dnodev for data forwarding. The physical
node v ∈ V capable of function f ∈ Rc has the processing
delay dfuncv̂f ,v

for executing the function f .

D. CSPTP-Based ILP for Online Service Chaining

With the help of the augmented network, the online service
chaining problem can be formulated as the following ILP
Z(x), where x = [xc,ki,j ] (k ∈ K+

c ), (i, j) ∈ E+ denotes the
binary decision variables [10]:

xc,ki,j =


1, if a physical/virtual link (i, j) is used in

kth subpath of a service path for
service chain request c,

0, otherwise.
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min
x

∑
(i,j)∈E+

di,j
∑
k∈K+

c

xc,ki,j , (1)

s.t. xc,ki,j = {0, 1}, (i, j) ∈ E+, k ∈ K+
c , (2)

∑
j∈V+

i

xc,ki,j −
∑
j∈V+

i

xc,kj,i =


1 if i = αc,k,
−1 if i = βc,k,
0 otherwise,

i ∈ V+, k ∈ K+
c , (3)

xc,ki,v̂fc,k
= xc,k+1

v̂fc,k ,i
,

(i, v̂fc,k) ∈ Ê in, (v̂fc,k , i) ∈ Êout, k ∈ Kc, (4)

xc,ki,v̂fc,m
= 0,

(i, v̂fc,m) ∈ Ê in, k ∈ K+
c ,m 6= k, (5)

bc
∑
k∈K+

c

xc,ki,j ≤ Bi,j , (i, j) ∈ E , (6)

pnodec

∑
(v,j)∈E

∑
k∈K+

c

xc,kv,j +
∑

(v̂f ,v)∈Êout

pfuncc,f

∑
k∈K+

c

xc,kv̂f ,v ≤ Pv,

v ∈ V. (7)

The objective function (1) is the minimization of the total
delay of the service path, where di,j is given as follows.

di,j =


dnodei + dlinki,j , if (i, j) ∈ E ,
dfunci,j , if (i, j) ∈ Êout,
0, otherwise.

The CSPTP-related constraints are given by (2)–(7). Con-
straints (2)–(5) are revelant to realization of the SPTP. Con-
straint (2) defines the domain of the binary decision variables.
Constraint (3) is the standard flow conservation equations.
Constraint (4) guarantees the connectivity between kth and
(k + 1)th subpaths of service chain request c. Constraint (5)
prohibits the service path from traversing the imaginary node
v̂fc,m in kth subpath (m 6= k). Constraint (6) (resp. (7))
gives the constraint on physical link capacity (resp. processing
capacity of the physical node).

IV. LAGRANGIAN HEURISTICS FOR CSPTP-BASED
ONLINE SERVICE CHAINING

To address the computational complexity, we propose La-
grangian heuristics to solve the CSPTP-based ILP for the
online service chaining.

A. Overview

Algorithm 1 presents the proposed algorithm to solve the
CSPTP-based ILP for the online service chaining. The pro-
posed algorithm is based on the Lagrangian heuristics frame-
work, which consists of three techniques, i.e., Lagrangian
relaxation, shortest path tour algorithm [7], and subgradient
algorithm. We first formulate the Lagrangian dual problem for
the CSPTP-based ILP Z(x) using the Lagrangian relaxation,
which transforms the CSTP into SPTP. (The details will be
shown in Section IV-B.) Next, to solve the SPTP efficiently,

Algorithm 1 Proposed algorithm.

Require: Optimality tolerance δ, maximum number Tmax of
subgradient iteration, and weighting parameter ω.

Ensure: Optimal solution x∗.
1: µ(τ) ← 0, γ(τ) ← 0, τ ← 0
2: do
3: x∗ ← FIND SHORTEST PATH TOUR(Φ(µ(τ),γ(τ)))
4: if x∗ is infeasible then
5: return None
6: h(τ), g(τ) ← SUBGRADIENT(Φ(µ(τ),γ(τ)))

7: θ
(τ)
µ ← ω/(

√
τ ||h(τ)||), θ(τ)γ ← ω/(

√
τ ||g(τ)||)

8: µ(τ+1) ← max{0,µ(τ) + θ
(τ)
µ h(τ)}

9: γ(τ+1) ← max{0,γ(τ) + θ
(τ)
γ g(τ)}

10: τ ← τ + 1
11: while STOP CONDITION()
12: return x∗

we apply the existing algorithm for finding the shortest path
tour [7], which will be described in Section IV-C. To handle
the original capacity constraints, we also adopt the subgradient
algorithm, which will be explained in Section IV-D.

B. Lagrangian Relaxation

As mentioned in Section I, the constrained SPTP, which
only considers the constraints on link capacities, belongs to
NP-complete [14]. Since the CSPTP considers the constraints
on both node and link capacities, i.e., (6) and (7), it is
also expected to belong to NP-complete. Considering the fact
that the SPTP belongs to the complexity class P [13], we
transform the CSPTP-based ILP Z(x) into the SPTP-based
ILP, i.e., Lagrangian problem, thanks to Lagrangian relaxation.
We construct the Lagrangian function L(x,µ,γ) by relaxing
(6) and (7) with multipliers γ = (γi,j)(i,j)∈E ,µ = (µv)v∈V
(γi,j ≥ 0, µv ≥ 0):

L(x,µ,γ) =
∑

(i,j)∈E

∑
k∈K+

c

(di,j + µip
node
c + γi,jbc)x

c,k
i,j

+
∑

(v̂f ,v)∈Êout

∑
k∈K+

c

(dfuncv̂f ,v
+ µvp

func
c,f )xc,kv̂f ,v

−
( ∑
(i,j)∈E

γi,jBi,j +
∑
i∈V

µiPi
)
.

The Lagrangian problem Φ(µ,γ) is defined as

Φ(µ,γ) = min
x

L(x,µ,γ)

s.t. (2)–(5),

where all the constraints (2)–(5) are the SPTP-related ones. For
any µ ≥ 0 and γ ≥ 0, Φ(µ,γ) gives the lower bound of the
optimal objective value of the original CSPTP-based ILP, i.e.,
Φ(µ,γ) ≤ Z(x). Therefore, finding µ and γ that maximize
Φ(µ,γ) approaches the minimization of Z(x), which can be
achieved by solving the following Lagrangian dual problem:

max
γ≥0,µ≥0

Φ(µ,γ). (8)
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Fig. 2: An example of transformation of the augmented
network in Fig. 1.

C. Finding Shortest Path Tour

To find the optimal µ and γ such that Φ(µ,γ) is max-
imized, we need to solve the Lagrangian problem Φ(µ,γ)
repeatedly. For certain µ and γ, Φ(µ,γ) belongs to an SPTP
because the objective function L(x,µ,γ) consists of the
total path cost (delay) minus a constant

(∑
(i,j)∈E γi,jBi,j +∑

i∈V µiPi
)

where the link delay di,j is redefined as the
following cost:

di,j =


dnodei + dlinki,j + µip

node
c + γi,jbc, if (i, j) ∈ E ,

dfunci,j + µip
func
c,f , if (i, j) ∈ Êout,

0, otherwise.

To efficiently solve the SPTP, we apply the shortest path tour
algorithm [7], which first calculates the minimum cost for each
subpath from k = 1 to k = Kc + 1 and then conducts the
Dijkstra algorithm to obtain the shortest path.

To apply this algorithm, we need to slightly modify the
augmented network to guarantee the connectivity between kth
and k + 1th subpaths (k = 1, . . . ,Kc). More specifically, the
set of imaginary nodes, V̂ , is updated as {v̂f,i}f∈F,i∈Nf

where
each imaginary node is prepared for the pair of function and
physical node capable of the function, i.e., {v̂f,i}f∈F,i∈Nf

.
The corresponding set of incoming virtual links, Ê in, and
that of outgoing virtual links, Êout, are also updated as
{(i, v̂f,i)}f∈F,i∈Nf

and {(v̂f,i, i)}f∈F,i∈Nf
, respectively. The

example of transformation of the augmented network in Fig.1
is shown in Fig. 2.

D. Subgradient Algorithm

The last task is finding appropriate µ and γ to maximize
Φ(µ,γ), i.e., solving the Lagrangian dual problem. We adopt
the subgradient algorithm [22] to solve it. The subgradient
algorithm first initializes parameters (i.e., τ , µ, and γ) (line
1). Then, it solves the Lagrangian problem Φ(µ,γ) using
FIND SHORTEST PATH TOUR(Φ(µ,γ)) function [7] (line 3).
If it fails to solve the problem, the algorithm stops and no
solution is found (lines 4 and 5). Otherwise, it calculates the
subgradient h(τ) (resp. g(τ)) of the corresponding variable
µ (resp. γ) through SUBGRADIENT(Φ(µ(τ),γ(τ))) function

(line 6). Here, the update rules of the subgradient h(τ) and
g(τ) are given as follows:

h
(τ)
i =

(
pnode
c

∑
k∈K+

c

∑
(i,j)∈E

xc,ki,j

+pfunc
c,f

∑
k∈Kc

∑
(j,i)∈Êout

xc,kj,i
)
− Pi.

g
(τ)
i,j = bc

∑
k∈K+

c

xc,ki,j −Bi,j ,

where, h(τ)i (resp. g(τ)i,j ) denotes the ith (resp. (i, j)th) element
of h(τ) (resp. g(τ)). Based on the subgradient and step size
(i.e., θ(τ)µ and θ(τ)γ ), it updates µ(τ+1) and γ(τ+1) (lines 8–9).
The update rules of µ and γ are given as follows:

µ(τ+1) = max{0,µ(τ) + θ(τ)µ h(τ)}, (9)

γ(τ+1) = max{0,γ(τ) + θ(τ)γ g(τ)}, (10)

θ(τ)µ = ω/(
√
τ ||h(τ)||),

θ(τ)γ = ω/(
√
τ ||g(τ)||),

where ω is a weighting parameter. If h(τ)i (resp. g(τ)i,j ) is less
than or equal to zero, (7) (resp. (6)) holds, and thus µ(τ)

i (resp.
γ
(τ)
i,j ) will be reduced as in (9) (resp. (10)). Otherwise, µ(τ+1)

i

(resp. γ(τ+1)
i,j ) will be increased to strengthen the penalty

for violating (7) (resp. (6)). This procedure is repeated by
gradually decreasing the step size θ(τ)µ and θ(τ)γ (line 7) until
satisfying the stop conditions given by STOP CONDITION()
function (lines 2–11).

The algorithm will stop when one of the following three
conditions is satisfied. The first condition is that the solution
of Φ(µ(τ),γ(τ)), x∗, satisfies the original CSPTP-related
constraints at the first iteration. The second condition is that
x∗ satisfies the CSPTP-related constraints and the relative
improvement ratio of the objective value between τ th and
(τ + 1)th iteration, i.e., (L(τ+1) − L(τ))/L(τ), is less than
or equal to the optimality tolerance δ. The last condition is
that the number τ of iterations reaches a predefined threshold
Tmax.

E. Computational Complexity

Finally, we discuss the computational complexity of the
proposed algorithm. The proposed algorithm will iterate the
while loop (lines 2–11) at most Tmax. In each loop, the
shortest path tour algorithm in line 3 becomes bottleneck. The
computational complexity of the shortest path tour algorithm
is given by O((Kc+1)V +)+O((Kc+1)E+ log V +), where
the first term is related to the calculation of the minimum cost
for each subpath from k = 1 to k = Kc + 1 and the second
one is required to conduct the Dijkstra algorithm to obtain the
shortest path [7]. As a result, the computational complexity
of the proposed algorithm becomes O(Tmax(Kc + 1)V +) +
O(Tmax(Kc + 1)E+ log V +).
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TABLE I: Service chain demand and requirements [20], [23]
(NAT: Network Address Translator, FW: Firewall, TM: Traffic
Monitor, WOC: WAN Optimization Controller, IDPS: Intru-
sion Detection Prevention System, and VOC: Video Optimiza-
tion Controller).

Service Sequence of functions Demand bc

Web service NAT-FW-TM-WOC-IDPS 18.2% 100 Kbps
VoIP NAT-FW-TM-FW-NAT 11.8% 64 Kbps
Video streaming NAT-FW-TM-VOC-IDPS 69.9% 4 Mbps
Online gaming NAT-FW-VOC-WOC-IDPS 0.1% 4 Mbps

TABLE II: Processing requirements for VNFs per service
chain request from 5 aggregated users [23].

Function type pfuncc,f,k

FW 0.0045
IDPS 0.0535
NAT 0.0046
TM 0.0665
VOC 0.027
WOC 0.027

V. NUMERICAL RESULTS

In this section, we evaluate the practicality of the proposed
algorithm from the viewpoint of the computational complexity
and performance of service chaining. In the calculation, we
used the server with Intel Core i9-9900K 8 core and 64 GB
memory.

A. Evaluation Scenario

We use the physical network composed of 200 physical
nodes and physical links between two arbitrary physical nodes,
each of which is randomly generated according to the prob-
ability π = 0.032 as in [24]. We assume that the capacity
of each physical node i (resp. physical link between physical
nodes i and j (i, j ∈ V, i 6= j) is identical, i.e., Pi = 1 (resp.
Bi,j = 1 [Gbps]). The propagation delay of each physical
link between two physical nodes i and j is also identical,
i.e., dlinki,j = 10 [ms]. The traversal and processing delay
of each physical node v are set to be dnodev = 1 [ms] and
dfuncv̂f ,v

= 50 [ms] ((v̂f , v) ∈ Êout), respectively.
We assume the service chain demand and requirements in

Table I. As a result, the NFV network supports six function
types (F = 6) and four service types, each of which is
composed of five functions (Kc = 5). Each function f ∈ F
is assigned to different Nf = 5 physical nodes, which are
randomly chosen from V . We select each service chain request
c according to the demand distribution in Table I. Each
service chain request c serves five aggregated users and has
the processing requirements per service chain request, where
each function required by the service chain request c has
the processing requirement pfuncc,f,k and the data forwarding
requires pnodec = 0.0025. The origin oc and destination dc
of service chain request c are randomly selected from V such
that oc 6= dc.

We implemented a simulator for the online service chaining
in C++ programming language. In the simulation, we assume

the following queuing model. A request for a new service
chain request c arrives at the system following a Poisson
process of parameter λ (λ > 0). The new request will be
added to the end of the queue with infinite buffer. The NFV
orchestrator tries to find a suitable service path for each service
chain request in a first come first served (FCFS) manner. Note
that the service time, which is required for service chaining,
may vary depending on the service chain requirements and
remaining network capacity. If the NFV orchestrator succeeds
in finding the service path for service chain request c, the
corresponding service path will be established with the service
path delay and occupy the allocated physical nodes and links
during the connection holding time, which is set be 10 [s]. The
simulation time is set to be 100 [s].

For comparison purpose, we evaluate the CSPTP-based
ILP for the online service chaining and a simple greedy-
based heuristic algorithm for the service chaining [10]. To
solve the CSPTP-based ILP, we used the existing solver
CPLEX 12.8 [25] with the parallel optimization parameter
(i.e., the number of threads) of 32. The greedy-based heuristic
algorithm (Greedy SC) divides the service path into Kc + 1
subpaths and sequentially tries to find a shortest path for each
subpath from the beginning (k = 1) to the end (k = Kc + 1).
The computational complexity of the greedy-based heuristic
algorithm is given by O((Kc+1)E+ log V +) [10]. As for the
proposed algorithm, through the preliminary experiments, we
set the parameters to be δ = 0.05, ω = 100, and Tmax = 3.

As for the effectiveness of service chaining, in addition
to the objective function, i.e., average total delay of service
paths among all accepted requests, we evaluate the acceptance
ratio that is the ratio of the number of service chain requests
successfully served by the NFV orchestrator to the total
number of service chain requests arriving at the NFV network.
Note that the remaining service chain requests in the queue at
the simulation end are rejected. In terms of the computational
complexity, we adopt the execution time, which is the average
of times required to calculate service paths for all the service
chain requests served by the NFV orchestrator. In context of
queueing theory, the execution time can be interpreted as the
service time. To measure how busy the system is, we use the
traffic intensity ρ = λ/µ where µ is the average service rate.
In what follows, the simulation results are the average of 50
independent simulation experiments.

B. Optimality of Service Chaining

In this section, we first focus on the performance limit of
resource allocation under an ideal case where the execution
time is ignored. This assumes that a new incoming service
chain request is served immediately and the queue is always
empty. Fig. 3 depicts the transition of total delay when
changing the arrival rate λ. We observe that the total delay
increases with the arrival rate λ, regardless of the schemes.
This is because the increase of λ leads to more resource
consumption, and thus the new service chain request may be
forced to establish a longer service path, due to the capacity
constraint. However, we confirm that the proposed algorithm

SUBMITTED VERSION



1 2 3 4 5 6 7 8

Arrival rate λ

360

370

380

390

400

410

420

T
ot

al
d

el
ay

[m
s]

Greedy algorithm

Proposed scheme

CSPTP-based ILP

Fig. 3: Impact of arrival rate λ on total delay (ideal case).
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Fig. 4: Impact of arrival rate λ on acceptance ratio.

exhibits almost the same performance as the CSPTP-based ILP
and improves the total delay by 13.3–17.2 [ms] compared with
the Greedy SC.

Fig. 4 illustrates the impact of the arrival rate λ on the
acceptance ratio in the ideal case. Simply speaking, resource
allocation with low network utilization will contribute to high
acceptance ratio. In our problem, the objective function is the
minimization of total delay of service paths, which somewhat
contributes to reducing the network utilization by shortening
each service path in terms of its hop count. Focusing on the
ideal case, we observe that the three schemes show similar
tendency: 1) The acceptance ratio first keeps almost one in
the range of λ = [1, λ̂] and 2) it gradually decreases with
increase of λ. The value of λ̂ is, however, different among
the schemes. The Greedy SC has λ̂ = 4 and shows the worst
performance among them. On the other hand, the CSPTP-
based ILP achieves the optimal result. We confirm that the
proposed algorithm is competitive with the CSPTP-based ILP.
In particular, the performance degradation of the proposed
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Fig. 5: Impact of arrival rate λ on execution time (realistic
case).
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Fig. 6: Impact of arrival rate λ on traffic intensity ρ (realistic
case).

algorithm is suppressed by 0.11% compared with that of the
CSPTP-baed ILP.

C. Tradeoff between Optimality of Service Chaining and So-
lution Complexity

In actual systems, the execution time is not negligible and
prone to vary depending on the schemes. Fig. 5 illustrates
the impact of arrival rate λ on the execution time. We first
observe that the proposed algorithm and Greedy SC show
much smaller execution time than the CSPTP-based ILP,
thanks to the low computational complexity. Note that the
decrease of execution time in the CSPTP-based ILP is caused
by the deterioration of the acceptance ratio in Fig. 4.

Next, we focus on how the execution time affects the perfor-
mance of resource allocation. Increase of the execution time
also increases the number of waiting service chain requests
in the queue, and thus the acceptance ratio will drop. Fig. 4
illustrates how λ affects the acceptance ratio in the realistic
case where the actual execution time is considered. Note that
the acceptance ratio can be degraded by the following two
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factors, i.e., resource depletion or long execution time. We
first observe that the acceptance ratio of the CSPTP-based
ILP drastically degrades at λ = 3 in the realistic case, due to
the complexity factor, which can also be confirmed from the
relationship between the arrival rate λ and traffic intensity ρ, as
shown in Fig. 6. This result is caused by the heavy load of the
system where the traffic intensity ρ becomes higher than one.
On the other hand, the Greedy SC cannot achieve the optimal
acceptance ratio, due to the resource depletion caused by
inefficient resource allocation. In contrast to these schemes, the
proposed algorithm can achieve almost the optimal acceptance
ratio.

VI. CONCLUSION

In this paper, we have proposed the Lagrangian heuristics
framework to solve the CSPTP-based ILP for the online
service chaining in the NFV network, so as to address both
computational complexity and optimality of service path. In
particular, we have integrated multiple existing techniques
(i.e., Lagrangian relaxation, shortest path tour algorithm, and
subgradient algorithm) into one solution. We have first for-
mulated the Lagrangian dual problem for the CSPTP-based
ILP with the help of the Lagrangian relaxation, which reduces
the computational complexity by transforming the CSPTP into
the SPTP. Next, we have solved the Lagrangian dual problem
by applying the existing SPTP algorithm and the subgradient
algorithm.

Through the simulation results, we have confirmed that
with the increase of arrival rate the CSPTP-based ILP with
the existing solver CPLEX degrades the performance due
to its complexity while the Greedy SC cannot perform the
high acceptance ratio because of the resource depletion by
the inefficient resource allocation. On the contrary, we have
shown that the proposed algorithm can achieve almost the
optimal resource allocation with much smaller execution time
compared with the CSPTP-based ILP. In future work, we plan
to extend the proposed algorithm for both service chaining and
function placement.
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