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Abstract—Service function chaining (SFC) establishes a service
path where a sequence of functions is executed according to
service requirements. However, SFC lacks a mechanism to
ensure proper traversal of relay nodes in the data plane.
Misconfigurations and the presence of attackers can lead to
forwarding anomalies and path deviation, potentially allowing
packets to bypass security network functions in the service
path. To mitigate potential security breaches, ordered proof of
transit (OPoT) has been proposed as a mechanism to verify
whether traffic adheres to the designated path. In this paper,
we realize lightweight OPoT-based path verification based on
extended Berkeley Packet Filter (eBPF) for trustworthy SFC.
Furthermore, by integrating it with the existing SFC proxy,
we extend the proposed approach to accommodate both SFC-
aware and SFC-unaware virtual network functions (VNFs) in the
segment routing over IPv6 data plane (SRv6) domain. Through
experiments, we demonstrate the capability of the proposed
approach to detect path deviations. Additionally, we reveal the
performance limitations of the proposed approach.

Index Terms—Service Function Chaining (SFC), extended
Berkeley Packet Filter (eBPF), Ordered Proof-of-Transit (OPoT),
Segment Routing over IPv6 Data Plane (SRv6), SFC proxy

I. INTRODUCTION

Thanks to the integration of network functions virtualization
(NFV) and software defined networking (SDN), a network
operator can deploy a network slice, a logically isolated
network, to meet diverse requirements of applications and
services. Service function chaining (SFC) is a fundamental
technology to establish a service path that traverses executable
virtual network functions (VNFs) according to the service
chain requirements [1], [2]. OpenFlow [3], segment routing
over IPv6 data plane (SRv6) [4], [5] and its extension
with compressed segment identifiers (cSIDs) [6], [7], segment
routing over multi-protocol label switching (SR-MPLS) [5],
[8], and network service header (NSH) [9] are utilized for
implementing SFC.

Despite its flexibility in accommodating diverse service re-
quirements, SFC encounters challenging security issues [10]–
[13] due to absence of a mechanism to verify traffic adherence
to the specified service path while traversing VNFs in the
prescribed sequence. These security concerns, such as network
operators’ misconfigurations and potential attacks, may lead
to forwarding anomalies and path deviations, enabling traffic
to bypass security network functions in the service path.
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Consequently, this not only breaches end-user contracts and
policies but also poses potential security risks by bypassing
security VNFs, such as firewalls and deep packet inspectors,
integrated into the service chain.

Therefore, both end-users and network operators require
a mechanism to verify that traffic has traversed all VNFs
in the service chain in the intended order. There have been
several mechanisms to detect forwarding anomalies and path
deviations [14]–[16]. Proof of transit (PoT) [14] is a mech-
anism to verify whether the traffic traverses a valid set of
relay nodes by applying Shamir’s secret sharing (SSS) [17].
Ordered PoT (OPoT) [14] integrates symmetric masking with
PoT, enabling the verification of packet traversal of relay nodes
in appropriate order. In-situ Operations, Administration, and
Maintenance (IOAM) [15] is a general framework to collect
network telemetry data within the packet while the packet tra-
verses a particular network domain. IOAM’s PoT option type
can support PoT-based SFC verification. ChainSign provides
higher security than OPoT but requires SFC-aware VNFs that
support SFC-related packets (e.g., SRv6 packets) [16].

In this paper, we propose OPoT verification using extended
Berkeley Packet Filter (eBPF) [18], which allows programs
strictly verified by an eBPF verifier to run in the Linux kernel
space. To the best of our knowledge, this paper presents
the first implementation of OPoT using eBPF. Implementing
path verification functions in user-level VNFs complicates
VNF functionality, which hinders low-cost software updates.
The proposed mechanism facilitates software modularization
by decoupling the path verification functions from user-level
VNFs and offloading them to eBPF as kernel network func-
tions. Additionally, some VNFs may be SFC-unaware (e.g.,
legacy VNFs). Supporting these SFC-unaware VNFs provides
network operators with several benefits: (1) leveraging pre-
vious investments during migration, (2) facilitating interoper-
ability and multi-vendor environments, and (3) reducing the
costs of implementing SFC-aware VNFs [19]. We develop a
mechanism applicable to SRv6 environments containing both
SFC-aware and SFC-unaware VNFs by integrating OPoT with
an existing eBPF-based SFC proxy [20]. Through experiments,
we demonstrate the proposed scheme’s ability to accurately
verify OPoT-based service paths and assess the throughput
impact associated with its introduction.

The main contributions of the manuscript are as follows:
1) By offloading OPoT verification to eBPF, the proposed

mechanism ensures path verification without modify-
ing user-level VNFs. This approach enhances software
modularity and promotes code reusability. Furthermore,
the proposed OPoT verification can accomodate both
SFC-unaware VNFs and kernel network functions by
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implementing OPoT using eBPF and integrating it with
the existing eBPF-based SFC proxy [20]. To the best
of our knowledge, this is the first work to implement
eBPF-based OPoT.

2) Through experiments, we demonstrate that both the
eBPF-based OPoT and its integration with eBPF-based
SFC proxy function properly.

3) The experiment results reveal the performance limita-
tions of the proposed OPoT verification in terms of
packet rate, bit rate, and processing overhead. The
eBPF-based OPoT schemes nearly achieve the line-
rate performance up to a maximum link speed of up
to 3 Gbps. At a maximum link speed of 5 Gbps, the
performance degradation of the eBPF-based OPoT and
the eBPF-based OPoT with cSIDs is evaluated to 7.0%
and 8.3%, respectively, compared with SRv6 and SRv6
with cSIDs transmission, primarily due to limitations in
packet processing capability. These results imply that the
path verification using the eBPF-based OPoT is practical
for many use cases in terms of its performance.

The rest of the manuscript is organized as follows. Section II
gives an overview of related work. In Section III, we introduce
PoT, SRv6, eBPF, and SFC proxy. Section IV presents the
proposed path verification method for trustworthy SFC using
eBPF, SRv6, SFC proxy, and OPoT. Section V demonstrates
the fundamental characteristics of the proposed scheme. Fi-
nally, Section VI gives the conclusion.

II. RELATED WORK

There have been studies on establishing trustworthy
SFC [13]–[16], [21], [22]. PoT is a mechanism to verify
whether traffic follows a designated path by applying SSS [14],
which can be implemented in the IOAM [15]. PoT can be
applied to traffic engineering and policy-based routing in
addition to SFC. In PoT, all packets on the service path are
associated with PoT metadata, which is updated by a piece
of secret whenever each packet passes through a node and
subsequently used for reconstruction of secret at the verifier
node. Furthermore, OPoT integrates symmetric masking with
PoT to realize verification of the routing order of each node
on the service path [14]. This mechanism is compatible with
source routing (e.g., SRv6 and SR-MPLS) and facilitates the
aggregation of routing information.

PoT has been implemented in several network-
programmable frameworks [23], [24]. In [23], Borges et
al. proposed a PoT scheme for source routing using a
polynomial key-based architecture [25], implemented on
dedicated hardware (e.g., programmable switches using the
Programming Protocol-Independent Packet Processors (P4)
language. The Fast Data Project also incorporated PoT
in a Vector Packet Processing (VPP) framework, enabling
kernel-bypass packet processing on commodity hardware [24].
Kernel-bypass packet processing requires constructing and
managing a network stack in the user space, thus avoiding
the kernel network stack’s overhead. In contrast, our study
implements an in-kernel PoT scheme via an eBPF program
operating on commodity hardware. This in-kernel packet

processing approach allows the scheme to be compatible with
VNFs running on both user and kernel spaces. A survey on
path verification mechanisms is provided in [26].

The PoT draft addresses security considerations against
representative risks, including partial and full detours, eaves-
dropping on PoT metadata, and replay attack [14]. PoT
can detect partial and full detours as long as the following
conditions are met: the secret information is not leaked, and
polynomials are of 𝑘 −1th degree when 𝑘 nodes are present in
the path. To attempt to predict the secret information, passive
attackers may try to eavesdrop on PoT metadata for differential
analysis by adding a node in the original path. Section 7.2 of
[14] discusses that predicting the secret information through
differential analysis is difficult. In a reply attack, a passive
attacker can reuses PoT metadata from an old packet to replay
it with a new packet, bypassing PoT reconstruction. It has
been shown that such attacks can be prevented by appending
a timestamp (i.e., a sequence number) to the random value
in the PoT metadata. The verifier node can employ existing
anti-replay mechanisms (e.g., sliding window in IPsec) to
detect replayed PoT metadata. For further details on these
countermeasures, see Section 7 of [14].

Several studies have also been conducted to further enhance
security. Aguado et al. improved the security of key exchange
techniques and random value generation for PoT by applying
quantum key distribution and quantum random number gener-
ators to PoT [21]. Pattaranantakul et al. proposed a protocol,
named ChainSign, using ordered multi-signature (OMS) and
NSH [9] to ensure higher security than the PoT [16]. Chain-
Sign improves both security and computational complexity of
PoT but requires SFC-aware VNFs supporting both OMS and
NSH. This implicitly assumes that all VNFs on the network
must be SFC-aware.

The challenging issue of the computational complexity in
OPoT is that computational processing is required per packet
whenever a packet passes through a node on the service path.
In this paper, we aim to establish lightweight and fast packet
processing by implementing OPoT in the eBPF program run-
ning on the Linux kernel. eBPF is a technology to control the
Linux kernel by injecting strictly verified programs into it [18],
[27]. Thanks to its lightweight, extensibility, and portability,
eBPF is applied to various networking domains: packet filter-
ing [28], SFC proxy [20], SRv6 [29], and VNFs [30], [31].
The SFC proxy is a technology that enables the incorporation
of SFC-unaware VNFs into SFC [20]. The proposed scheme
realizes trustworthy SFC by combining OPoT with the SFC
proxy even in environments with a mixture of SFC-aware and
unaware VNFs. Furthermore, since the proposed scheme is
implemented in the eBPF program, it is applicable not only
to VNFs operating in user space but also to those operating
in kernel space [30]. Unlike the existing implementation of
the eBPF-based SFC proxy for SR-MPLS [20], this paper
implements the SFC proxy for SRv6, one of the most popular
source routing schemes.

III. FOUNDATIONAL TECHNOLOGIES

Existing trustworthy SFC schemes do not support kernel
network functions and SFC-unaware VNFs [14], [16], [23],
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TABLE I: Notations.

Symbol Description
L Set of SR policies
V Set of nodes
𝜋𝑙 Service path of SR policy 𝑙 ∈ L,

𝜋 = (𝑣0, 𝑣1, . . . , 𝑣𝑘−1)
𝑓 Polynomial
𝒂, 𝒃 Polynomial coefficient vectors
𝑝 Prime number
𝑠 Secret
𝑠1, . . . , 𝑠𝑛 𝑛 pieces of secret, i.e., shares
𝑟 Random value
LPC 𝑗 Lagrange polynomial constant of the 𝑗 th node
CML 𝑗 Cumulative value of the 𝑗 th node
(𝑥 𝑗 , 𝑦 𝑗 ) Point of the 𝑗 th node
𝒄 𝑗 Cipher keys, 𝒄 𝑗 = (𝑐𝑟𝑗 , 𝑐

CML
𝑗
)

𝒅 𝑗 Decipher keys, 𝒅 𝑗 = (𝑑𝑟𝑗 , 𝑑
CML
𝑗
)

P𝑙, 𝑗 OPoT parameter

SDN Controller secret

Verifier

A

B C

D E

F

Verified

Not verified

Fig. 1: Overview of PoT.

[24]. This section outlines the fundamental technologies of
the proposed scheme, focusing on OPoT, SRv6, eBPF, and
SFC proxy, to address these limitations. To achieve trustworthy
SFC, OPoT verification is implemented to verify whether
traffic follows a designated service path. (Details are provided
in Section III-A.) SFC enforces traffic to traverse a specific
service path using SRv6, as discussed in Sections III-B. Since
the existing OPoT verification is incompatible with kernel
network functions, we implement OPoT verification in eBPF,
mentioned in Section III-C. To apply OPoT verification to both
SFC-aware and SFC-unaware VNFs, the proposed scheme
integrates the eBPF-based OPoT verification with the existing
eBPF-based SFC proxy, detailed in Section III-D. Table I
presents the notations used in this paper.

A. Proof of Transit

Fig. 1 illustrates the overview of PoT [14]. It aims to verify
whether traffic traverses “Path 1” (i.e., 𝐴 → 𝐵 → 𝐶 → 𝐹)
as depicted in Fig. 1. In PoT, the SDN controller possesses
the secret 𝑠 of “Path 1” and distributes a piece of the secret 𝑠
(i.e., share) to each node on “Path 1.” The traffic retrieves
the share from a node on “Path 1” after passing through
it. If all shares are acquired upon the traffic arrival at the
destination node (verifier node), it can be demonstrated that
the traffic has traversed all nodes on “Path 1”. Conversely,
if the traffic follows “Path 2” (i.e., 𝐴 → 𝐷 → 𝐸 → 𝐹)

instead of “Path 1,” the verifier node can confirm that the traffic
fails to obtain all shares. In PoT, this share retrieval process
is verified through mathematical means. Sections III-A1 and
III-A2 elaborate on SSS and security enhancement of PoT,
respectively. Section III-A3 provides the reconstruction of
the secret 𝑠, while Section III-A4 introduces OPoT, which
incorporates the ordering property into PoT.

1) Principle of Shamir’s Secret Sharing: SSS is a cryp-
tographic algorithm that distributes a secret among multiple
nodes [17]. Under arithmetic modulo a prime number 𝑝, SSS
partitions the secret 𝑠 into 𝑛 pieces (shares) 𝑠1, 𝑠2, . . . , 𝑠𝑛, and
can reconstruct the secret 𝑠 if and only if 𝑘 (1 ≤ 𝑘 ≤ 𝑛) or
more shares are collected. PoT adopts Lagrange interpolation
to realize SSS by assuming 𝑘 = 𝑛. Given distinct 𝑘 points
(𝑥 𝑗 , 𝑦 𝑗 ) ( 𝑗 = 0, 1, . . . , 𝑘 − 1), the Lagrange interpolation
approximates a curve connecting them to a polynomial 𝑓 (𝑥) =∑𝑘−1

𝑗=0 𝑎 𝑗𝑥
𝑗 of the 𝑘 − 1th degree:

𝑓 (𝑥) =
𝑘−1∑︁
𝑗=0

𝑦 𝑗 𝑙 𝑗 (𝑥), (1)

where 𝑙 𝑗 (𝑥) denotes a Lagrange basis polynomial, which is
given by

𝑙 𝑗 (𝑥) =
∏

0≤𝑚≤𝑘−1,𝑚≠ 𝑗

𝑥 − 𝑥𝑚
𝑥 𝑗 − 𝑥𝑚

. (2)

Considering the fact the constant term 𝑓 (0) in Eq. (1) can be
divided into 𝑘 constant terms 𝑦 𝑗 𝑙 𝑗 (0) in Eq. (2), 𝑓 (0) can be
reconstructed as a linear sum under arithmetic modulo a prime
number 𝑝:

𝑓 (0) mod 𝑝 =
©«
𝑘−1∑︁
𝑗=0
(𝑦 𝑗LPC 𝑗 mod 𝑝)ª®¬ mod 𝑝, (3)

where LPC 𝑗 = 𝑙 𝑗 (0) mod 𝑝 ( 𝑗 = 0, 1, . . . , 𝑘 − 1). In the PoT,
𝑓 (0) is regarded as a secret 𝑠 and 𝑘 shares (i.e., (𝑥 𝑗 , 𝑦 𝑗 )
and LPC 𝑗 ) ( 𝑗 = 0, . . . , 𝑘 − 1) are distributed among 𝑘 nodes
(𝑣0, . . . , 𝑣𝑘−1) that execute the corresponding VNF on the
service path 𝜋 = (𝑣0, . . . , 𝑣𝑘−1).

2) Security Improvement of PoT with Randomness: The-
oretically, PoT can be realized using only the mechanism
mentioned in Section III-A1. However, using the same polyno-
mial for each packet poses a potential security risk. To tackle
these concerns, PoT incorporates a polynomial 𝑦 = 𝑓1 (𝑥) =
𝑠+∑𝑘−1

𝑗=1 𝑎 𝑗𝑥
𝑗 of 𝑘 −1th degree defined per service path and a

polynomial 𝑧 = 𝑓2 (𝑥, 𝑟) = 𝑟 +∑𝑘−1
𝑗=1 𝑏 𝑗𝑥

𝑗 of the 𝑘 − 1th degree
defined per packet, where 𝑟 is generated by the ingress node
𝑣0 of SFC upon the arrival of a new packet. The polynomial
𝑓1 is kept confidential, while only the 64-bit random value
𝑟 of the polynomial 𝑓2 is observable by all nodes, includ-
ing potential attackers. The sum of two polynomials (i.e.,
𝑓3 (𝑥, 𝑟) = 𝑓1 (𝑥) + 𝑓2 (𝑥, 𝑟)) results in a polynomial defined per
packet, containing the secret 𝑠. The SDN controller distributes
the points (𝑥 𝑗 , 𝑦 𝑗 ) on the polynomial 𝑓1, LPC 𝑗 , coefficient
vector 𝒃 = (𝑏1, . . . , 𝑏𝑘−1), and the prime number 𝑝 to each
node 𝑣 𝑗 ∈ 𝜋 on the service path.

SUBMITTED VERSION



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. Y, MARCH 2025 4

3) Reconstruction: Considering that Eq. (3) can be com-
puted sequentially, the PoT performs sequential computation,
stores the result in the packet header as 64-bit CML, and
forwards the packet to the next node upon traversal. At each
node 𝑣 𝑗 ∈ 𝜋, the value of CML (i.e., CML 𝑗 ) is updated using
the following equation and stored in the header along with a
random value 𝑟 .

CML 𝑗 = CML 𝑗−1 + (𝑦 𝑗 + 𝑧 𝑗 )LPC 𝑗 mod 𝑝, (4)

where CML−1 = 0 at the origin node 𝑣0 and 𝑟 is generated
as a random value. Other nodes 𝑣 𝑗 retrieve CML 𝑗−1 and 𝑟

from the packet header. This ensures that the header size
remains constant, regardless of the value of 𝑘 . After calculating
CML𝑘−1 using Eq. (4), the last node 𝑣𝑘−1 further updates it
with CML𝑘−1 mod 𝑝.

If the packet correctly follows the designated service path,
the 𝑘th node (i.e., verifier node) obtains the constant term
CML𝑘−1 = 𝑎0 + 𝑏0 mod 𝑝 of polynomial 𝑓3 from Eq. (3). If
CML𝑘−1 = (𝑟+𝑠) mod 𝑝, the verifier node can confirm that the
packet has traversed the designated 𝑘 nodes. However, POT
cannot verify the order of visited nodes.

4) Ordered PoT: OPoT can verify the order of visited nodes
by applying symmetric masking (i.e., XOR cipher) to the
PoT metadata [14]. The SDN controller distributes two 64-bit
cipher keys (𝑐𝑟

𝑗
, 𝑐CML

𝑗
) for ciphering PoT metadata (𝑟,CML 𝑗 )

and two 64-bit decipher keys (𝑑𝑟
𝑗
, 𝑑CML

𝑗
) for deciphering PoT

metadata (𝑟,CML 𝑗−1) to the nodes ∀𝑣 𝑗 ∈ 𝜋 along the service
path. The decipher (cipher) keys of node 𝑣 𝑗 are set to the
cipher (resp. decipher) keys of preceding node 𝑣 𝑗−1 (resp.
succeeding node 𝑣 𝑗+1). Note that the origin (resp. destination)
node 𝑣0 (resp. 𝑣𝑘−1) does not have the cipher (resp. decipher)
keys. In OPoT, node 𝑣 𝑗 deciphers the PoT metadata using
the XOR operation upon packet arrival, then ciphers the PoT
metadata using the XOR operation and forwards the packet to
the next node.

Fig. 2 illustrates an example of the OPoT reconstruction
process. Suppose a valid path is given as (𝑣1, 𝑣2, 𝑣3, 𝑣4). The
upper part of Fig. 2 shows a successful OPoT verification
case, while the middle part shows a failure due to an invalid
order of the same nodes, (𝑣1, 𝑣2, 𝑣3, 𝑣4). To highlight the
difference between OPoT and PoT, the lower part of Fig. 2
shows that PoT verification succeeds even for the invalid
path (𝑣1, 𝑣2, 𝑣3, 𝑣4). We assume 𝑠 = 19, 𝑝 = 53, 𝑟 = 10,
𝑓1 (𝑥) = 9𝑥3 + 10𝑥2 + 6𝑥 + 𝑠, and 𝑓2 (𝑥, 𝑟) = 10𝑥3 + 8𝑥2 + 3𝑥 + 𝑟 .
Each node 𝑣 𝑗 ( 𝑗 = 1, . . . , 4) has parameters (𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ,LPC 𝑗 ),
the cipher key (𝑐𝑟

𝑗
, 𝑐CML

𝑗
), and the decipher key (𝑑𝑟

𝑗
, 𝑑CML

𝑗
).

Recall that 𝑧 𝑗 is computed using a deciphered random value 𝑟

in the received packet. In the upper part of Fig. 2, if node 𝑣2
receives a packet from preceding node 𝑣1, the PoT metadata
is successfully deciphered using the symmetric key (18, 44)
shared between 𝑣1 and 𝑣2. As a result, the deciphered value
CML1 ⊕ 𝑐CML

1 ⊕ 𝑑CML
2 (resp. 𝑟 ⊕ 𝑐𝑟1 ⊕ 𝑑𝑟2) computed by 𝑣2

matches the value of CML1 (resp. 𝑟) calculated by 𝑣1. In the
middle part of Fig. 2, if node 𝑣3 receives a packet from 𝑣1,
it fails in decryption because the cipher and decipher keys
differ (i.e., (18, 44) and (36, 123)). The failed decryption at
node 𝑣 𝑗 yields invalid values of CML 𝑗 and 𝑧 𝑗 . Specifically,
𝑟 is 10, but the deciphered value 𝑟 ⊕ 𝑐𝑟1 ⊕ 𝑑𝑟3 computed by

𝑣3 is 40, leading to an incorrect calculation of 𝑧3 = 𝑓2 (𝑥3, 𝑟).
Similarly, the CML1 value calculated at node 𝑣1 is 20, but
the deciphered value CML1 ⊕ 𝑐CML

1 ⊕ 𝑑CML
3 computed by node

𝑣3 is 34. These invalid random and CML values propagate
incorrect information to succeeding nodes, ultimately causing
reconstruction failure. Since PoT does not use the symmetric
masking, it succeeds in verification even for the invalid path,
as shown in the lower part of Fig. 2.

B. Segment Routing over IPv6 Data Plane
SRv6 is a kind of source routing, which can realize SFC [4],

[5]. Nodes in the service path (𝑣0, . . . , 𝑣𝑘), excluding the
ingress node 𝑣0, can be represented as an SR policy. There are
three types of nodes in an SRv6 domain: SR source node, SR
segment endpoint node, and transit node. The SR source node
encapsulates an incoming packet with an SR header (SRH).
SRH includes segment list and segments left fields defined
by an SR policy. The segment list field contains 𝑚 (𝑚 ≥ 1)
segment identifiers (SIDs), each representing the IPv6 address
of the node to be routed, stored in reverse order. The segments
left field acts as a pointer of the SID of the next node. SRH
can also include additional information as a type length value
(TLV) object. In the proposed scheme, the aforementioned PoT
metadata is included in the TLV object. (Details of the PoT
metadata are given in Section IV-C.)

The node receiving an IPv6 packet acts as either an SR
segment endpoint node or transit node. The SR segment
endpoint node is a node whose SID matches the destination
address of the outer IPv6 header. If the segments field of
the received SRv6 packet does not have a zero value, the
SR segment endpoint node inspects SRH of the received
packet and updates the segments left and the next SID in the
segment list with the destination address in the outer IPv6
header. Afterward, it forwards the packet to the next node
according to the forwarding table. Otherwise, the SR segment
endpoint node decapsulates the SRv6 packet and forwards the
decapsulated packet to the destination node. The transit node
is a node whose SID does not match the destination address
of the outer IPv6 header and only forwards a packet to the
next node based on IPv6 routing.

A 128-bit SRv6 SID is divided into three fields (i.e.,
Locator, Function, and Argument) and represented as
LOC:FUNCT:ARG. Typically, the locator, function, and argu-
ment fields are defined with 48, 16, and 64 bits, respectively.
The locator field (LOC) corresponds to an IPv6 network prefix
used in routing protocols to identify a node hosting a specific
function. The function field (FUNCT) designates the function
to be executed at the node, while the argument field (ARG)
optionally provides arguments to the function. The locator
field routes the packet to a specific node, where a function
identified by the function field is executed. Generally, the
argument field is unused. Thus, the locator field supplies a
48-bit IPv6 network prefix (i.e., Locator Block) in an SRv6
network, with each node assigned a 64-bit IPv6 network sub-
prefix that includes the locator block. This design supports a
maximum of 216 nodes in an SRv6 network.

Since the SID field in SRv6 is 128 bits (16 bytes), SRv6
routing requires additional 16𝑚 bytes to carry an SRv6 packet
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Fig. 2: OPoT reconstruction process.
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Fig. 3: cSID structure in compressed segment list (𝑚 = 8).

with a segment list of length 𝑚. To reduce the segment
list length, compressed-SID (cSID) (a.k.a. micro Segment

Identifier (uSID)) has been proposed in [6], [7]. cSIDs are
encoded via either the NEXT-C-SID or REPLACED-C-SID
encoding rule; we primarily focus on the NEXT-C-SID encod-
ing rule. Fig. 3 illustrates the cSID structure in a compressed
segment list (𝑚 = 8). A compressed segment list has one or
more cSID containers, each structured in a 128-bit SID field
(LOC:FUNCT:ARG) and stored in reverse order, as shown
in Fig. 3. Each cSID container includes a 48-bit locator-
block field (blue), a 16-bit locator-node and function field
(green), and a 64-bit argument field (red). The locator-node
and function field denotes the first cSID, and the argument
field specifies the remaining cSIDs. This allows a single SID
to represent up to five cSIDs, each occupying 2 bytes. The sixth
and subsequent cSIDs are defined in the next cSID container.
If a cSID container has fewer than five CSIDs, the remaining
bits are zero-padded, indicating the end of a cSID container.

SRv6 with cSIDs operates as follows. An SR source node
encapsulates an incoming packet with an SRH, as shown in
Fig. 3, according to the SR policy and sets the first cSID
container as the destination address of the outer IPv6 header.
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Fig. 4: Overview of eBPF-based SFC proxy.

Upon receiving an SRv6 packet, an SR segment endpoint
node inspects the destination address of the outer IPv6 header
to check if the argument field is non-zero. If the argument
field is non-zero, the SR segment endpoint node updates the
destination address to designate the next cSID by shifting the
augment field left by 2 bytes and filling the last 2 bytes of
the augment field with zeros. Otherwise, it decrements the
segment left field and replaces the destination address with
the next cSID container indicated by the segment left field.
After completing these processes, the SR segment endpoint
node forwards the packet to the next node with the updated
destination address.

C. Extended Berkeley Packet Filter

eBPF is a technology to control the Linux kernel by inject-
ing programs verified by an eBPF verifier into the kernel [18],
[27]. The eBPF verifier assesses the stability and safety of
programs, including absence of infinite loops and memory
access violations, before loading them into the Linux kernel.
An eBPF program can handle incoming (resp. outgoing)
packets to (resp. from) a network interface by integrating with
traffic control (TC) ingress (resp. egress). eBPF is utilized in
various networking domains, including packet filtering [28],
SFC proxy [20], SRv6 [29], and VNFs [30], [31]. A BPF map
serves as a key–value store, facilitating data sharing between
kernel space and user space.

D. eBPF-based SFC Proxy

An SFC proxy is a technology that integrates SFC-unaware
VNFs into SFC. In [20], the eBPF-based SFC proxy is
implemented, which decapsulates an SFC-related (encapsu-
lated) packet before processing an SFC-unaware VNF and
encapsulates it after packet processing using a BPF map.
Fig. 4 illustrates the overview of the eBPF-based SFC proxy.
The SFC proxy operates within the TC ingress and egress.
Upon the arrival of a newly encapsulated packet (i.e., an
SRv6 packet) at the network interface, the eBPF program
attached at the TC ingress is activated. It decapsulates the
SRv6 packet, stores a key-value pair in the BPF map, and
forwards the decapsulated SRv6 packet to the user space
program and/or another eBPF program. Since this key-value
pair will be used in the later packet encapsulation process,
key collisions between the packet being processed and newly
arriving packets must be avoided. Therefore, the SFC proxy
supports only protocols that contain unique header information

to identify individual packets (e.g., TCP). As in [20], the
unique key is composed of the source and destination IP
addresses, the identification field of IP header, the TCP source
and destination port numbers, and the TCP sequence and
acknowledgment numbers from the inner header, while the
outer IPv6 header and SRH form the corresponding value.
The SFC-unaware VNF can handle the decapsulated packet
and forwards it to the next node. Upon the departure of
the processed packet, the eBPF program attached at the TC
egress is activated. This program running on the TC egress
encapsulates the processed packet by retrieving the outer IPv6
header and SRH from the BPF map using the IPv6 header of
the processed packet as a key.

IV. EBPF-BASED OPOT FOR PATH VERIFICATION

A. Overview

Fig. 5 illustrates the overview of the proposed scheme to
implement both OPoT and SFC proxy using eBPF. The OPoT
function comprises three types of functions operating within
the TC ingress of the ingress node (Fig. 5a), TC egress of
egress node (Fig. 5b), and TC egress of the endpoint node
(Figs. 5c and 5d), respectively. The SR source node is respon-
sible for the ingress node. If the segments left field of the
received SRv6 packet is zero, the SR segment endpoint node
is responsible for the egress node; otherwise, it is responsible
for the endpoint node. The SFC proxy function comprises two
types of functions, which are attached to the TC ingress and
egress of the endpoint nodes (Fig. 5c).

The eBPF program attached to the TC ingress of the ingress
node initializes the TLV option (i.e., PoT metadata) and
performs SRH encapsulation. (See the detail of PoT metadata
in Section IV-C.) In case of the SFC-unaware VNF, the eBPF
program attached to the TC ingress of the endpoint node
records the header information of the incoming packet to a
cache and decapsulates the incoming packet. Note that the
cache is implemented by the BPF map, as described in Sec-
tion IV-B. After packet processing by VNF, the eBPF program
attached to the TC egress of the endpoint node retrieves
the header information from the cache and encapsulates the
processed packet. Subsequently the eBPF program performs
the OPoT reconstruction algorithm. On the other hand, in
case of the SFC-aware VNF, the eBPF program only executes
the OPoT reconstruction algorithm at the TC egress of the
endpoint node. The eBPF program attached to the TC ingress
of the egress node is responsible for the OPoT-based path
verification and SRv6 decapsulation. (The details of the OPoT
reconstruction algorithm and SFC proxy will be presented in
Section IV-D.)

B. BPF Maps

Table II presents the BPF maps used in the proposed
scheme. Ingress, endpoint, and egress nodes ∀𝑣 𝑗 ∈ 𝜋𝑙 maintain
three types of information (SR policies, OPoT parameters, and
SFC proxies) using the BPF maps, respectively. The SR policy
map stores both the prefix length and destination address as
a key, with the SR policy as its corresponding value. Let L
denote a set of SR policies managed by the SDN controller.
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Fig. 5: Overview of proposed scheme.

TABLE II: BPF maps.

Name Key Value
SR policy map Prefix length and destination address SR policy 𝑙

OPoT map Prefix length and destination address OPoT parameters P𝑙, 𝑗
SFC proxy map Source and destination IP addresses,

identification field of IP header, TCP
source and destination port numbers, and
TCP sequence and acknowledgment
numbers from the inner packet

Outer IPv6 header and SRH

The SDN controller records the SR policy 𝑙 ∈ L into the
SR policy map managed by both ingress node 𝑣0 and nodes
(𝑣1, . . . , 𝑣𝑘−1) included in the segment list of the SR policy 𝑙.

The OPoT map manages parameters used for OPoT. Let
the 8-tuple OPoT parameter of node 𝑣 𝑗 ∈ 𝜋𝑙 under policy 𝑙

be defined as P𝑙, 𝑗 = ⟨𝑥𝑙, 𝑗 , 𝑦𝑙, 𝑗 , 𝒃𝑙 ,LPC𝑙, 𝑗 , 𝑝, 𝒄𝑙, 𝑗 , 𝒅𝑙, 𝑗 , 𝑠𝑙⟩. The
sizes of parameters 𝑥𝑙, 𝑗 , 𝑦𝑙, 𝑗 , LPC𝑙, 𝑗 , 𝑝, and 𝑠𝑙 are assumed
to be 8 bytes each. The size of the coefficient vector 𝒃𝑙 is
8( |𝜋𝑙 | − 1) bytes. The cipher key 𝒄𝑙, 𝑗 and decipher key 𝒅𝑙, 𝑗
are each 16 bytes. Therefore, the total OPoT parameter size
is 64 + 8|𝜋𝑙 | bytes. Each element is prepared by the SDN
controller per SR policy 𝑙 according to the process mentioned
in Section III-A and is stored in the OPoT map at node 𝑣 𝑗

as P𝑙, 𝑗 . The eBPF program running on the TC ingress of
the endpoint node records the key-value pair, as defined in
Section III-D, into the SFC proxy map. It is assumed that these
BPF maps are updated and/or deleted by the SDN controller.

C. Metadata of OPoT

Fig. 6 illustrates the TLV of OPoT, which is required to
implement OPoT in the SRv6 domain. As shown in Fig. 6,
the TLV of OPoT contains the following fields: type (1 byte),
length (1 byte), random value (8 byte), and cumulative value
fields (8 byte). Since the SRH size is defined as a multiple of 8
octets [32], the TLV size must adhere to this rule; therefore 6-
byte zero padding is required between the length and random
value fields. The random value 𝑟 is generated by the ingress

Type Length 0

0

Random value

Random value (cont’d)

Cumulative value

Cumulative value (cont’d)

0 31

Fig. 6: TLV of OPoT.

node (i.e., 𝑣0) in the SRv6 domain and is assigned to the
random value field. The cumulative value field is computed
by the node 𝑣 𝑗 in the SRv6 domain according to Eq. (4).

D. eBPF-based Implementation of OPoT Reconstruction

Pseudo-code 1 presents the eBPF-based Implementation
of OPoT reconstruction. The pseudocode differs for ingress,
endpoint, and egress nodes, respectively. At the ingress (resp.
egress) node, the eBPF program, the OPOT-INITIALIZATION
(resp. OPOT-VERIFICATION) function, is attached to the TC
ingress, as depicted in Fig. 5a (resp. Fig. 5b), while at
the endpoint node, the OPOT-RECONSTRUCTION function is
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Pseudo-code 1 eBPF-based Implementation of OPoT recon-
struction.

1: function OPOT-INITIALIZATION(𝑝𝑘𝑡)
2: 𝑙 ← GET_POLICY(𝑝𝑘𝑡)
3: 𝑟 ← GET_RANDOM_VALUE()
4: CML← 0
5: 𝑝𝑘𝑡 ← ENCAPSULATE(𝑝𝑘𝑡, 𝑙).
6: P𝑙, 𝑗 ← GET_OPOT_PARAMETERS(𝑝𝑘𝑡).
7: 𝑝𝑘𝑡 ← UPDATE_TLV_OPTION(𝑝𝑘𝑡, P𝑙, 𝑗 )
8: FORWARD(𝑝𝑘𝑡, 𝑡𝑎𝑏𝑙𝑒)
9: function SFC-PROXY(𝑝𝑘𝑡)

10: 𝑖𝑛𝑛𝑒𝑟, 𝑜𝑢𝑡𝑒𝑟 ← GET_HEADERS(𝑝𝑘𝑡)
11: RECORD_INTO_SFC_PROXY_MAP(𝑖𝑛𝑛𝑒𝑟, 𝑜𝑢𝑡𝑒𝑟)
12: 𝑝𝑘𝑡 ← DECAPSULATE(𝑝𝑘𝑡)
13: PASS_TO_VNF(𝑝𝑘𝑡)
14: function OPOT-RECONSTRUCTION(𝑝𝑘𝑡)
15: if VNF running on 𝑣 𝑗 is SFC-unaware then
16: 𝑖𝑛𝑛𝑒𝑟 ← GET_HEADER(𝑝𝑘𝑡)
17: 𝑜𝑢𝑡𝑒𝑟 ← LOOKUP_SFC_PROXY_MAP(𝑖𝑛𝑛𝑒𝑟)
18: 𝑝𝑘𝑡 ← ENCAPSULATE(𝑝𝑘𝑡, 𝑜𝑢𝑡𝑒𝑟).
19: (𝑟,CML) ← GET_TLV_OPTION(𝑝𝑘𝑡)
20: P𝑙, 𝑗 ← GET_OPOT_PARAMETERS(𝑝𝑘𝑡).
21: 𝑝𝑘𝑡 ← UPDATE_TLV_OPTION(𝑝𝑘𝑡, P𝑙, 𝑗 )
22: FORWARD(𝑝𝑘𝑡, 𝑡𝑎𝑏𝑙𝑒)
23: function OPOT-VERIFICATION(𝑝𝑘𝑡)
24: P𝑙, 𝑗 ← GET_OPOT_PARAMETERS(𝑝𝑘𝑡).
25: if VERIFY(𝑝𝑘𝑡, 𝑠𝑙) is successful then
26: 𝑝𝑘𝑡 ← DECAPSULATE(𝑝𝑘𝑡)
27: FORWARD(𝑝𝑘𝑡, 𝑡𝑎𝑏𝑙𝑒)
28: else
29: DROP(𝑝𝑘𝑡)

attached to the TC egress, as shown in Figs. 5c and 5d. If
the endpoint node does not support SFC-aware VNFs, the
SFC-PROXY function is further attached to the TC ingress
in Fig 5c, in addition to the TC egress.

Upon the arrival of a new packet 𝑝𝑘𝑡 at the TC ingress of
ingress node 𝑣 𝑗 , the eBPF program (i.e., the INITIALIZATION
function) is activated (lines 1–8). It first retrieves the SR
policy 𝑙 from the SR policy map using the prefix length and
destination address of packet 𝑝𝑘𝑡 as a key (line 2), generates a
random value 𝑟, and initializes CML with zero (lines 3 and 4).
It then encapsulates the packet 𝑝𝑘𝑡 according to the SR policy
𝑙 (line 5). Next, it retrieves the OPoT parameters P𝑙, 𝑗 from the
OPoT map using the prefix length and destination address of
packet 𝑝𝑘𝑡 as a key (line 6) and updates CML in the TLV
option according to Eq. (4) (line 7). Finally, it forwards the
packet 𝑝𝑘𝑡 to the next node 𝑣 𝑗+1 according to the forwarding
information base (FIB) table 𝑡𝑎𝑏𝑙𝑒 (line 8).

Upon the arrival of a new SRv6 packet at the TC ingress of
the endpoint node 𝑣 𝑗 , the eBPF program (i.e., the SFC-PROXY
function) is activated if the endpoint node 𝑣 𝑗 only supports
an SFC-unaware VNF (lines 9–13). Otherwise, it is not
activated, and the packet 𝑝𝑘𝑡 is directly processed by the
SFC-aware VNF. In the SFC-PROXY() function, the eBPF
program records a key–value pair (𝑖𝑛𝑛𝑒𝑟, 𝑜𝑢𝑡𝑒𝑟) into the SFC

h1 r1

r2 r3

r6 h2

r4 r5

(a) Path verification scenario.

h2r1 r2 r3 r4 r5 r6h1

(b) Performance limitation scenario.

Fig. 7: Evaluation network.

proxy map, where 𝑖𝑛𝑛𝑒𝑟 is the inner IPv6 header of the SRv6
packet and 𝑜𝑢𝑡𝑒𝑟 is the corresponding outer IPv6 header and
SRH, and then decapsulates it (lines 10–12). Afterwards, the
decapsulated packet 𝑝𝑘𝑡 is processed by the SFC-unaware
VNF (line 13).

After the packet 𝑝𝑘𝑡 is processed by the VNF, it will be
forwarded to the next node 𝑣 𝑗+1. At this moment, the eBPF
program (i.e., the RECONSTRUCTION function) is activated
at the TC egress of the endpoint node 𝑣 𝑗 (lines 14–22). If
the VNF running on the endpoint node 𝑣 𝑗 is SFC-unaware,
the eBPF program first retrieves 𝑜𝑢𝑡𝑒𝑟 (i.e., the outer IPv6
header and SRH) from the SFC proxy map using the inner
IP/IPv6 header 𝑖𝑛𝑛𝑒𝑟 of the processed packet 𝑝𝑘𝑡 as a key.
It then encapsulates the packet 𝑝𝑘𝑡 according to the outer
IPv6 header and SRH (lines 15–18). Next, the eBPF program
retrieves the random value 𝑟 and the cumulative value CML
from the TLV option of the processed packet 𝑝𝑘𝑡 (line 19). It
also retrieves the OPoT parameters P𝑙, 𝑗 from the OPoT map
using the prefix length and destination address of the packet
𝑝𝑘𝑡 as a key (line 20). It updates CML in the TLV option
according to Eq. (4) (line 21). Finally, it forwards the packet
𝑝𝑘𝑡 to the next node 𝑣 𝑗+1 according to the FIB table 𝑡𝑎𝑏𝑙𝑒

(line 22).
Upon the arrival of an SRv6 packet at the egress node, the

eBPF program (i.e., the VERIFICATION function) is activated
at the TC ingress (lines 23–29). It verifies secret 𝑠 using
random value 𝑟 and cumulative value CML (line 25). If
the verification is successful, the eBPF program decapsulates
packet 𝑝𝑘𝑡 and forwards it according to FIB Table 𝑡𝑎𝑏𝑙𝑒

(lines 26–27). Otherwise, the eBPF program drops packet 𝑝𝑘𝑡
(line 29).

V. EVALUATION

A. Path Verification of OPoT

1) Evaluation Scenario: In the evaluation, we utilize a
server featuring the 13th Gen Intel R⃝ CoreTM i7-13700K CPU,
64 GB memory, and Ubuntu 22.04 LTS (kernel version: 6.2.0).
We emulate the network depicted in Fig. 7a on the server
using the kernel virtual machine (KVM) [33]. Each node
on the virtual network is provisioned with 1 vCPU, 4 GB
memory, and Ubuntu 22.04 LTS (kernel version: 6.2.0). Since
the prototype of the proposed scheme does not include a
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TABLE III: Scheme comparison.

Scheme Protocol eBPF OPoT SFC
proxy

MSS

IPv6 IPv6 - - - 1440
SRv6 SRv6 - - - 1312
SRv6cSID SRv6

with
cSID

- - - 1376

OPoT SRv6 ✓ ✓ - 1288
OPoTproxy SRv6 ✓ ✓ ✓ 1288
OPoTcSID SRv6

with
cSID

✓ ✓ - 1352

OPoTcSID
proxy SRv6

with
cSID

✓ ✓ ✓ 1352

control plane, we manually configure the parameters of each
node using a configuration file. Suppose that end-host h1
tries to communicate with end-host h2 through an SR domain
composed of nodes from r1 to r6. Node r1 serves as the
ingress node of SRv6, responsible for encapsulating incoming
packets from end-host h1. Nodes r2–r5 function as endpoint
nodes of SRv6, equipped with VNFs solely for forwarding,
responsible for forwarding incoming packets based on the
forwarding table. Node r6 acts as the egress node of SRv6,
tasked with decapsulating incoming packets and forwarding
them to end-host h2.

For comparative analysis, we prepare seven schemes:
IPv6, SRv6, OPoT (eBPF-based OPoT), OPoTproxy (eBPF-
based OPoT with SFC proxy), SRv6cSID (SRv6 with cSIDs),
OPoTcSID (eBPF-based OPoT with cSIDs), and OPoTcSID

proxy
(eBPF-based OPoT with cSIDs and SFC proxy), as shown
in Table III. In the IPv6 scheme, all nodes follow the normal
IPv6 protocol, where there is no SRv6 domain in the network.
In the SRv6 scheme, we adopt the standard SRv6 encapsu-
lation/decapsulation implementation in the Linux kernel and
deploy it in nodes r1, . . . ,r6. In the OPoT scheme, we
implement SRv6 encapsulation/decapsulation and OPoT as an
eBPF program. The OPoTcSID scheme adopts cSIDs instead
of original SIDs. In addition to these eBPF programs, the
OPoTproxy and OPoTcSID

proxy schemes also implement an eBPF-
based SFC proxy. In these OPoT-based schemes, the eBPF
programs are deployed to part of nodes: r1, r2, r3, and r6,
which results in the segment list of (r2,r3,r6).

We define the following evaluation scenario: Firstly, end-
host h1 transmits an ICMP packet three times to end-host h2
using the ping command. Secondly, the segment list registered
in the SR policy map of r1 is modified to (r4,r5,r6) due
to misconfiguration or tampering. Finally, h1 sends an ICMP
packet three times to h2 again.

2) Verification Result: Fig. 8 illustrates path verification
results by the eBPF-based OPoT. By focusing on the high-
lighted green area in Fig. 8, we confirm that OPoT successfully
verifies that the first three packets traverse the nodes along the
designated path (r1 → r2 → r3 → r6). Consequently,
the eBPF program at node r6 responds with “Verification
successful” and forwards the packets to h2. On the other hand,

when the segment list is modified, the eBPF program at node
r6 responds with “Verification failed” and drops the packet.
This indicates that the last three packets follow the altered
path (r1 → r4 → r5 → r6), as shown in the highlighted
red area of Fig. 8. We also confirm that the eBPF-based OPoT
with SFC proxy scheme shows the same behavior as the eBPF-
based OPoT scheme.

B. Performance Limitation

1) Evaluation Scenario: In this evaluation, we measure
both the packet rate and bit rate. We emulate the network
depicted in Fig. 7b on the server using the same settings, as
in Section V-A1. The maximum bandwidth of each node is
limited to a specific value between from 1 Gbps and 5 Gbps,
with a maximum transmission unit (MTU) of 1500 bytes for
each node interface, by editing the corresponding configura-
tion file in the network XML format [34]. Libvirt enforces
bandwidth limits using TC with the hierarchical token bucket
(HTB) queuing discipline. TCP packets are sent from h1 to h2
for 100 seconds using the iperf3 command. To accommodate
SRv6 encapsulation, we adjust the maximum segment size
(MSS) of TCP packets when sending them via iperf3. MSS
for SRv6 (resp. OPoT) packets with the segment list length
of 𝑚 is defined as 1500 − 60 − (48 + 16𝑚) bytes (resp.
1500− 60− (72 + 16𝑚) bytes). Note that the IPv6 (resp. TCP)
header size is set to 40 bytes (resp. 20 bytes). In schemes based
on the original SRv6, the segment list length 𝑚 is set to 5,
whereas in schemes based on SRv6 with cSIDs, 𝑚 is set to 1
(i.e., a compressed segment list contains five cSIDs.)

As for evaluation metrics, we consider both the packet
rate and the bit rate. Since the MSS of TCP packets varies
depending on the schemes used, we define the packet sending
efficiencies �̂�SRv6, �̂�cSID

SRv6, �̂�OPoT, �̂�cSID
OPoT as the ratios of the inner

packet size of Srv6, SRv6cSID, OPoT, and OPoTcSID to the
IPv6 packet size. In addition, we define 𝜌 as the ratio of the
bit rate of each scheme to that of IPv6. To evaluate the overall
processing overhead at the nodes along the path, we use the
round-trip time (RTT). We send 100 ICMPv6 packets from
h1 to h2 to measure RTT samples. It should be noted that
the eBPF-based OPoT is applied only to packets directed to
h2.

2) Throughput: In this section, we investigate the maxi-
mum link capacity at which actual transmission performance
can nearly achieve the theoretical upper limit (i.e., packet
sending efficiency). We also evaluate the number of bits that
can be transmitted and processed by the eBPF-based OPoT
implementation compared with IPv6, SRv6, and SRv6 with
cSID transmission. Figs. 9 and 10 illustrate how the maximum
link speed 𝐵max affects the packet rate and the bit rate,
respectively. We observe that all schemes exhibit a similar
trend in both packet rate and bit rate, showing nearly identical
packet rates when 𝐵max ≤ 3, indicating that the link capacity
is saturated. This suggests that all schemes can operate in
real-time up to 𝐵max ≤ 3, but their performance differs when
𝐵max ≥ 4. At 𝐵max = 5 Gbps, the packet rates of IPv6, SRv6,
OPoT, OPoTproxy, SRv6cSID, OPoTcSID, and OPoTcSID

proxy schemes
achieve 0.379 Mpps, 0.374 Mpps, 0.350 Mpps, 0.343 Mpps,
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Fig. 8: Path verification results by eBPF-based OPoT.
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Fig. 9: Relationship between the maximum link speed 𝐵max
and the packet rate.

0.376 Mpps, 0.351 Mpps, and 0.346 Mpps, respectively. Cor-
respondingly, their bit rates reach 4.35 Gbps, 3.89 Gbps,
3.62 Gbps, 3.58 Gbps, 4.12 Gbps, 3.78 Gbps, and 3.73 Gbps,
respectively. Specifically, the performance degradation of
OPoT, OPoTproxy, OPoTcSID, and OPoTcSID

proxy is evaluated to be
7.0%, 8.1%, 8.3%, and 9.4% at 𝐵max = 5 Gbps, compared with
SRv6 and SRv6cSID schemes, due to the additional processing
load of the OPoT reconstruction algorithm and the SFC proxy.

The degradation in both packet rate and bit rate arises
from two factors: (1) packet sending efficiency and (2) packet
processing capability. To understand how these factors affect
the bit rate degradation, we illustrate the relationship between
the maximum link speed 𝐵max and the bit rate ratio 𝜌

compared with IPv6 transmission in Fig. 11. By focusing on
�̂�cSID

SRv6, �̂�SRv6, �̂�OPoT, and �̂�cSID
OPoT, we confirm that the SRv6

transmission, required in SRv6cSID, SRv6, OPoT OPoTproxy,
OPoTcSID, and OPoTcSID

proxy schemes, results in bit rate degra-
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Fig. 10: Relationship between the maximum link speed and
the bit rate.

dation compared to IPv6 transmission. This degradation is
caused by the increased header size (i.e., decreased packet
sending efficiency) due to the SRv6 encapsulation, as shown in
Table III. Notably, schemes based on SRv6 with cSIDs attain
higher bit rates than schemes based on the original SRv6 when
𝐵max ≤ 3 due to smaller header sizes. Conversely, examining
the gap between �̂� and 𝜌 for each scheme, we observe that
this gap remains almost constant when 𝐵max ≤ 3, but the bit
rate degradation becomes more significant as 𝐵max increases to
5 Gbps. Specifically, we observe that 𝜌 of OPoTcSID and SRv6
reverses when 𝐵max = 5 Gbps. Furthermore, OPoTproxy and
OPoTcSID

proxy exhibit slightly lower 𝜌 than OPoT and OPoTcSID,
respectively, when 𝐵max = 5, due to the impact of the SFC
proxy. This result suggests the primary factor contributing to
performance degradation is the packet processing capability at
high maximum link speeds 𝐵max.
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Fig. 12: End-to-end RTT of ICMPv6 packets.

3) End-to-End RTT Evaluation: In this section, we evaluate
the end-to-end (E2E) RTT of ICMPv6 packets by comparing
the six schemes: SRv6, OPoT, OPoTproxy, SRv6cSID, OPoTcSID,
and OPoTcSID

proxy. Fig. 12 illustrates the box-and-whisker plot of
the E2E RTT for ICMPv6 packets. We observe that the average
E2E RTT for SRv6, OPoT, OPoTproxy, SRv6cSID, OPoTcSID,
and OPoTcSID

proxy shows 5.30 ms, 5.42 ms, 5.39 ms, 5.17 ms,
5.41 ms, and 5.47 ms, respectively. This slight increase in E2E
RTT compared to SRv6 appears to result from the additional
overhead introduced by OPoT and SFC proxy.

VI. CONCLUSION

In this paper, by leveraging extended Berkeley Packet Filter
(eBPF), we have implemented ordered proof of transit (OPoT)
in a lightweight way, achieving trustworthy service function
chaining (SFC) with path verification capability in the segment
routing over IPv6 data plane (SRv6) domain. We have further
integrated it with the SFC proxy to achieve the trustworthy
SFC even in environments with a mixture of SFC-aware and
unaware virtual network functions (VNFs).

Through experiments, we have demonstrated that the pro-
posed scheme enables the eBPF program to successfully verify
the specified path without requiring modifications to the VNFs

operating in the user space. Furthermore, we have identified
the performance limitations of the proposed scheme in terms
of bit rate, packet rate, and end-to-end round trip time. The
results indicate that the proposed scheme nearly reaches the
theoretical performance limit at a maximum link speed of up
to 3 Gbps; however, the performance degrades at a maximum
link speed of 4 Gbps or higher due to limitations in packet
processing capability. These results suggest that the proposed
scheme can accommodate various network services (e.g., IoT
networks, traffic control for multi-access edge computing,
and network security services). In future work, we aim to
implement OPoT-based path verification on smart network
interface cards (SmartNICs) to realize faster packet processing.
We also plan to implement a general framework, In-situ Op-
erations, Administration, and Maintenance (IOAM), in eBPF
for network telemetry and develop a control plane using Open
vSwitch (OVS) compatible with eBPF [35].
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