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Abstract—Executing biometric matching between two embed-
ding vectors on the blockchain remains a challenging problem
due to inherent privacy concerns and the computational con-
straints imposed by block gas limits. To address these challenges,
we propose zk-SABER, a succinct blockchain-based biomet-
ric authentication scheme that allows constant proof size and
verification cost with respect to the embedding vector length.
Our design combines a Merkle Tree and a biometric matching
algorithm within a zkSNARK circuit to prove that a user’s
biometric trait matches one of the registered templates in an
anonymous manner. To ensure compatibility with state-of-the-art
Deep Neural Network (DNN) models, we introduce a complete
quantization pipeline that converts floating-point embeddings into
zkSNARK-friendly representations. Our experiment results show
constant transaction gas cost and proof size, regardless of the
embedding vector length, thereby demonstrating the practicality
of zk-SABER for real-world blockchain environments.

Index Terms—anonymous, biometric authentication, zero-
knowledge proof, blockchain, biometric embedding, quantization

I. INTRODUCTION

Authentication verifies a user’s identity and serves as a
fundamental component of access control, which prevents
unauthorized access [1]. Traditional access control systems
rely on centralized administrators, introducing a single point
of failure. To address this, Blockchain-Based Access Control
(BBAC) has been proposed, leveraging the decentralized and
immutable nature of blockchain to mitigate server-side threats
such as Man-in-the-Middle (MiTM) and Distributed Denial
of Service (DDoS) attacks [2]. Authentication methods are
generally categorized as knowledge-based, token-based, or
biometric-based. While the first two have been well-studied
in blockchain contexts [3]–[6], biometric-based authentication
remains challenging due to its privacy risks. Unlike passwords
or tokens, biometric data is tied to individuals and cannot be
replaced, making privacy-preserving verification critical.

Several studies have applied zkSNARKs [7], [8] for privacy-
preserving biometric authentication. Guo et al. [9] verified
fingerprint features stored on trusted servers using zkSNARKs,
while Kothari et al. [10] encrypted biometric data and stored it
on IPFS. More recent methods use DNNs to extract embedding
vectors, followed by privacy-preserving processing. Blanton et
al. [11] used XOR-based secret sharing with MPC, assuming
non-colluding servers. In contrast, BioZero by Lai et al. [12]
employs Pedersen Commitments and zkSNARKs to privately
compute distances using homomorphic properties. BioZero

eliminates the need for trust in multiple parties and instead
builds on well-established cryptographic assumptions, notably
the perfect hiding property of Pedersen Commitments. How-
ever, BioZero’s linear proof size and verification complexity
can be prohibitive under blockchain gas limits, especially with
longer embedding vectors that offer higher matching accuracy.

To address this challenge, we propose a privacy-preserving
biometric authentication scheme with constant verification
and proof size relative to the embedding length. We refer
to this efficiency as succinctness, a term commonly used
in the zkSNARK literature to describe protocols with sub-
linear proof size and verification complexity. This naturally
opens up possibilities to utilize more complex deep learning
models that use higher embedding dimensions. Our method
introduces a quantization pipeline that transforms floating-
point DNN embeddings into zkSNARK-compatible inputs.
These quantized embeddings, along with Merkle proofs, are
used as private witnesses in a zkSNARK circuit, proving the
sampled biometric trait matches one of the stored registered
templates using set-membership proof [13]–[15]. The circuit
then computes the Cosine Distance between the sampled and
registered embeddings, ensuring zero knowledge throughout
the authentication process. We summarize our contribution as
follows:

• We propose zkSABER, a succinct blockchain-based bio-
metric authentication scheme that allows constant trans-
action gas cost and proof size for any embedding vector
length.

• Our proposed authentication scheme is fully zero-
knowledge with the help of zkSNARK and a crypto-
graphic hash function, ensuring the protection of the
user’s biometric embedding information and their access
history.

• We provide a complete quantization pipeline in our
method, introducing versatility to our proposal when
implementing the state-of-the-art DNN model.

We organized the remainder of this paper as follows. In
Section II, we introduce some important preliminaries that will
be used throughout the paper. We then describe our proposal
in Section III. We assert the security and the privacy claim in
Section IV. We then explain the details of our implementation
in Section V and present our experiment results in Sections VI.
Finally, we conclude this paper in Section VII.
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II. PRELIMINARIES

A. Zero-Knowledge Proofs

A zero-knowledge proof is a cryptographic protocol that
enables a Prover to convince a Verifier that a statement
is true without revealing any additional information beyond
the statement’s validity. Introduced by Goldwasser et al. in
1989 [16], this concept has become foundational in privacy-
preserving technologies, particularly because all problems
in NP are known to admit zero-knowledge proofs [17].
Originally defined as interactive protocols involving multiple
rounds of communication, zero-knowledge proofs have since
evolved into non-interactive forms, which are more suitable
for asynchronous environments like blockchains. These Non-
Interactive Zero-Knowledge Proofs (NIZKs) [18], often con-
structed using the Fiat-Shamir heuristic [19], allow a prover
to generate a single static proof π that convinces a verifier
without further interaction.

In general, a NIZK Π is based on a function R known as
an NP-relation. The relation R takes a pair (x,w) as input,
where x ∈ L is the public statement, and w is the secret
information known only to the prover, or witness. It returns
R(x,w) = 1 (true) only if the relation holds. Based on the
definitions by Bennaroch et al. [20] and Groth et al. [7],
a NIZK is formally defined as a tuple Π consisting of the
following three algorithms:

• KeyGen(R)→ (CRSprove, CRSverify): Takes a relation R
as input and generates a Common Reference String (CRS)
consisting of a proving key CRSprove and a verification
key CRSverify.

• Prove(CRSprove, x, w) → π: Takes the proving key, a
statement x, and a witness w satisfying R(x,w) = 1 as
input, and generates a proof π.

• VerProof(CRSverify, x, π) → {0, 1}: Takes the verifica-
tion key, a statement x, and a proof π as input, and either
accepts (1) or rejects (0) the proof.

This NIZK must satisfy three properties: Completeness,
Soundness, and Zero-Knowledge.

Furthermore, if a NIZK possesses an additional property
called Succinctness, meaning the proof size and the verifica-
tion complexity are at most logarithmic to the witness length,
which we specifically referred to as a SNARK (Succinct Non-
Interactive Argument of Knowledge).

Definition 1 (SNARK). A NIZK Π for language L is called
a succinct non-interactive argument of knowledge (SNARK) if
Π has an additional property called succintness, such that,

• Succinctness Given a statement x ∈ L, and a witness w,
the running time of verifier in Π is poly(λ+ |x|+log |w|)
and the argument size is poly(λ+ log |w|).

Various zkSNARK schemes have been proposed, such as
Groth16 [7]. We will also use a zk-friendly cryptographic
hash function called Poseidon [21], which offers significant
efficiency improvement compared to common hash functions
like SHA256 or Keccak.

B. Zero-Knowledge Set Membership Proof

A zero-knowledge set membership proof is a cryptographic
protocol that allows a prover to demonstrate that an element
belongs to a public set without revealing which specific
element it is. The method utilized in this work is based on
a combination of a Merkle Tree [15] and a zkSNARK.

First, a Merkle tree is constructed with the public keys
pk1, pk2, . . . , pkn of all registered members of the system
as its leaves. Only the root of this tree, the Merkle root
root, is published and maintained by a trusted third party. As
the individual public keys pki are not published, privacy is
preserved.

When a member wishes to prove their membership, they
know their secret key ski, the corresponding public key pki,
and the Merkle path pathi, which is the list of sibling node
hash values required to reach the root of the tree. The
user provides these as a secret input (witness) to generate a
zkSNARK proof π. This proof π convinces a verifier of the
following statement:

• The prover knows a certain pki and pathi that can be
used to correctly compute the public root.

The verifier is thus convinced that the person is a legitimate
member of the set, without learning their specific identity pki.

However, this basic scheme is vulnerable to replay attacks,
where a valid proof π, once generated, can be intercepted by a
malicious third party and reused illicitly. The standard solution
to this vulnerability in the cryptographic community is the
introduction of a Nullifier [22], [23].

A nullifier is a unique, single-use identifier associated with
each proof, typically computed from a user’s secret informa-
tion and information that is unique to each proof instance.
During proof verification, the verifier checks this nullifier
against a list of all previously submitted nullifiers to detect and
prevent double-spending. This mechanism ensures that each
proof is valid only once, thereby providing resistance to replay
attacks. Our proposed method also adopts this established
approach to ensure the security of the authentication system.

C. Symmetric Quantization

Since the proof process in zkSNARKs uses operations
over a finite field Fp, real-valued embedding vectors must be
converted to integers. Therefore, this work employs symmetric
quantization [24]. It maps a real number x ∈ R within a
representable range [−xmax, xmax] to an integer x̂ ∈ Fp using
a scaling factor s, which determines the fixed-point precision,
as follows:

x̂ =

{
round(x · s), if 0 ≤ x ≤ xmax,

P − round(|x| · s), if − xmax ≤ x < 0.

Here, P is the modulus of the finite field. This quantization
allows for arithmetic operations within the circuit. Addition
is modular addition of the quantized integers. The result of a
multiplication, however, has a scale of s2, requiring a rescale to
the original scale s. Division c = a/b is efficiently performed
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Fig. 1. zkSABER: Registration Protocol.

in-circuit by having the prover provide a quotient q and a
remainder r (where 0 ≤ r < |b̂|), while the verifier checks the
identity â = q · b̂+ r.

III. PROPOSED METHOD

In this section, we describe zkSABER, a succinct
blockchain-based biometric authentication scheme, which al-
lows constant transaction gas cost and proof size. This is
made possible by our quantization pipeline, which efficiently
converts a floating-point value from a DNN model into a finite
field representation suitable for zkSNARKs.

In the registration protocol, an off-chain scanning device
first captures the user’s biometric data, which is then processed
by a DNN to generate an embedding vector. This vector is
then converted into an integer vector b̂reg ∈ Fd

p suitable for
zkSNARKs using the method described in Section II-C. From
this vector, the user deterministically derives a secret key ωsk

and a corresponding public key ωpk. An administrator then
aggregates the ωpk of all users into a Merkle tree and records
only its root on-chain.

During the authentication protocol, the user generates a
proof π off-chain, which simultaneously proves four claims in
zero-knowledge: (1) membership in the Merkle tree (2) that
the cosine similarity between the registered vector b̂reg and the
authentication-time vector b̂auth exceeds a predefined thresh-
old τ (3) the cryptographic binding between the biometric
data and the identity and (4) resistance to replay attacks via a
nullifier.

Since the smart contract only needs to verify the small,
fixed-size proof π without processing any variable-length data,
an O(1) verification cost is achieved. This enables the practical
and large-scale deployment of privacy-preserving biometric
authentication systems.

A. System Model and Definitions

In this section, we define the components of the proposed
authentication protocol, zkSABER, and the underlying secu-
rity assumptions.

The hash function used in this paper is Poseidon, defined
as H : Fp × Fp → Fp. Furthermore, for a vector b̂ ∈ Fd

p of
length d > 2, we recursively apply the hash function H in a

manner similar to building a Merkle tree to compute a single
root element. We denote this operation as H(b̂).

1) System Model and Security Assumptions: This authenti-
cation system consists of the following three entities:

• User (Prover): Registers biometric information and gen-
erates a zero-knowledge proof for authentication.

• Verifier (Smart Contract): Verifies the submitted proof
on-chain.

• Administrator: Handles the initial system setup and
updates the Merkle tree upon user registration.

The trust model assumes that the Verifier and Administrator
are honest entities that follow the protocol, while Users are
potentially malicious. Based on this model, zkSABER aims
to protect against the following threats. A detailed technical
analysis for each threat is provided in the later Security
Analysis section.

• Spoofing: Fraudulent authentication using other user in-
formation.

• Replay Attack: Unauthorized reuse of a previously valid
authentication proof.

• Privacy Violation: Inferring sensitive data, such as bio-
metric information, from public data on-chain.

B. Registration Protocol
This section details the user registration protocol in

zkSABER. As shown in Figure 1, the protocol consists of
an off-chain process on the user’s device and an on-chain
registration performed by the Administrator. The registration
process comprises the following three main steps.

a) Secret Key Generation via Quantization: The user
extracts a feature vector breg using a DNN model and quan-
tizes it into a finite field vector b̂reg ∈ Fd

p suitable for
zkSNARKs. Next, they deterministically generate a secret key
ωsk = H(b̂reg) from this vector (Algorithm 1, lines 1-3).

b) Identity Commitment Construction: Using the gener-
ated secrets ωsk, the user constructs an identity commitment
ωpk, where ωpk = H(ωsk) serves as their public identifier
(Algorithm 1, lines 4).

c) On-chain Registration: The Administrator receives
ωpk, adds it as a new leaf to the Merkle tree, and then
records the updated Merkle root to the smart contract on-
chain(Algorithm 1, lines 5-8).
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Algorithm 1 Registration Protocol.
Input: User’s face image I .
Output: The blockchain state is updated with a new
Merkle root.
// Generate keys from biometric data

1: breg ← DNN Extractor(I)
2: b̂reg ← Quantize(breg) ▷ To finite field vector
3: ωsk ← H(b̂reg) ▷ H is Poseidon hash
4: ωpk ← H(ωsk)

// Update the on-chain Merkle root with the new user
5: Receive ωpk from User
6: current root ← SmartContract.getMerkleRoot()
7: rootnew ← GetRoot(InsertLeaf(current root , ωpk))
8: Call updateMerkleRoot on Smart Contract with

rootnew

C. Authentication Protocol

This section details the authentication protocol in
zkSABER, which allows a registered user to prove their
identity. As illustrated in Figure 2, the authentication process
consists of two main phases: an off-chain zero-knowledge
proof generation executed on the user’s device, and an on-
chain verification conducted by a smart contract.

The core of our protocol lies in the construction of a unified
zero-knowledge proof π that simultaneously attests to multiple

claims, thereby achieving security, privacy, and the efficiency
of a constant time O(1) verification cost. For this purpose,
the user generates a proof that satisfies a single integrated
authentication relation, denoted RzkSABER. This relation is
composed of the following two subrelations:

1) Biometric Matching Relation: This subrelation verifies
that the cosine similarity between the registered biometric
vectors and the ones captured during authentication exceeds
a predefined threshold τ ∈ (0, 1). To address the high cost
of direct square root and division operations in a zkSNARK
circuit, our method achieves efficiency by approximating the
squared ℓ2 norm n with bounded error. Furthermore, division
is replaced by an approach that relies on multiplication adapted
from the Euclidean division identity (detailed in Section II-C).
Accordingly, the threshold τ is also converted to a scaled
integer τ ′ := ⌊τ · s⌋. This matching relation Rmatch, reflecting
these efficiency improvements, is defined as follows:

Rmatch(τ
′, (b̂reg, b̂auth, nreg, nauth, c̃, ϵ)) = 1

⇐⇒ |n2 − ∥b̂∥2| < θ

∧s · ⟨b̂reg, b̂auth⟩ = c̃ · (nreg · nauth) + ϵ

∧c̃ > τ ′.

Here, θ denotes the allowed error tolerance in the norm
approximation, ϵ is the remainder term, and s is a fixed scaling
factor.

2) Anonymous Membership Proof Relation: This subrela-
tion proves that the user is a valid member of a group based
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on a Merkle tree and that the authentication is non-reusable. It
checks the validity of a Merkle path and a nullifier linked to the
user’s secret key ωsk. The relation is defined as follows, where
Rpair verifies that the public-private key pair is consistent:

RAnonMem(root, nullifier, (ωpk, ωsk, path, r)) = 1

⇐⇒ ωpk ∈ root ∧Rpair(ωpk, ωsk) = 1

∧nullifier = H(ωsk, r).

Finally, we unify the two subrelations, Rmatch and
RAnonMem, into a single authentication relation, RzkSABER. The
core of this unification is a binding constraint that links the
secret key ωsk from the membership proof to the registered
biometric vector b̂reg. This constraint ensures that the secret
key is deterministically derived from the biometric vector,
thereby intrinsically connecting the user’s on-chain anonymous
membership to their physical biometric identity.

The complete relation RzkSABER, a function of the public
statement x and private witness ω, is thus defined by the
following conjunction:

RzkSABER(x , ω) = 1

⇐⇒ Rmatch(τ
′, (b̂reg, b̂auth, nreg, nauth, c̃, ϵ)) = 1

∧RAnonMem(root, nullifier, (ωpk, ωsk, path, r)) = 1

∧H(ωsk) = H(b̂reg),

where the statement x and witness ω consist of:
• x := (root , nullifier, τ ′)
• ω := (ωpk, ωsk, path, r, b̂reg, b̂auth, nreg, nauth, c̃, ϵ).

A key aspect of the proposed architecture’s efficiency lies in
the composition of its public statement. Since data of variable
length such as biometric vectors and Merkle paths are treated
entirely as private witnesses, the smart contract only verifies
a small, fixed-size statement x . This design reduces the on-
chain verification cost to constant time (O(1)), independent of
the biometric vector length or the number of registered users.
The concrete protocol flow for generating and verifying the
zero-knowledge proof π is presented in Algorithm 2.

IV. SECURITY ANALYSIS

In this section, we will assert the claim about zkSABER
security and privacy inside the blockchain. We assume the
malicious adversary A is a probabilistic polynomial time
algorithm (PPT), in which we treat their algorithm as a black
box algorithm. We define two adversaries in our security
proof, Asec and Apriv, each denoting the security adversary and
privacy adversary. Our threat model disallowed the adversary
from tampering with the algorithm inside the blockchain,
assuming the immutability properties of the blockchain.

A. Security Adversary Analysis

Definition 2 (Authentication Forgery Game). The security of
the authentication scheme Πauth is defined by the following
game between a challenger and a PPT adversary Asec:

Algorithm 2 Authentication Protocol with Explanations.
Input: User’s authentication face image Iauth; User’s self-
managed secret b̂reg.
Output: Authentication result (Success / Fail).
// — User Side (Off-chain) —
1. Generate proof components and chain state:

1: b̂auth ← Quantize(DNN Extractor(Iauth))
2: (ωsk, ωpk)← GenerateKeys(b̂reg)
3: nullifier← H(ωsk, r)
4: (root , path)← GetMerkleProof(ωpk)
5: (nreg, nauth, c̃, ϵ)← ComputeSimilarity(b̂reg, b̂auth)

2. Generate a zero-knowledge proof π:
6: Define public statement x and private witness w
7: x := (root , nullifier, τ ′)
8: w := (ωpk, ωsk, path, r, b̂reg, b̂auth, nreg, nauth, c̃, ϵ)
9: π ← ZK SNARK.Prove(x,w)

10: SendTransaction(”authenticate”, π, x)

// — Verifier Contract (On-chain) —
11: function authenticate(π, x)
12: Check 1: Prevent replay attacks
13: Require isSpent[x.nullifier] == false

14: Check 2: Verify ZK proof
15: Require Verifier.verify(π, x) == true

The ZK proof internally verifies:
(a) Relation RAnonMem holds: Proves valid member-

ship & non-reusability.
(b) Relation Rmatch holds: Proves biometric similarity

> τ ′.
(c) Binding constraint holds: Links biometrics to the

secret key.

16: isSpent[x.nullifier] = true
17: emit AuthenticationSuccess
18: end function

1) Setup: The challenger generates a set of user pub-
lic/private key pairs, populates a Merkle tree with the
public keys, and computes the root root. Let pkset be the
set of all public keys and πset be the set of all valid
proofs generated by honest users so far.

2) Challenge: The challenger provides the adversary Asec
with the public parameters: the Merkle root root, the set
of public keys pkset, and the set of existing proofs πset.

3) Forgery: The adversary Asec outputs a new proof and
nullifier pair (π′, nullifer′).

We say that the scheme is secure if for any PPT adversary
Asec, the probability of winning the game is negligible. The
adversary wins if Π.VerProof(root, nullifer′, π′) = 1 and the
nullifier nullifer′ has not been used in any proof within πset.

Pr

[
(π′, nullifer′)← Asec(root, πset, pkset)
: Π.VerProof(root, nullifer′, π′) = 1

]
≤ negl(λ).
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Theorem 1. Assuming the zkSNARK Π is computationally
knowledge sound and the hash function H is a random oracle,
our authentication scheme Πauth is secure under Definition 2.

Proof. (Sketch) In the Authentication Forgery Game, any
attempt by an adversary Asec to generate a proof (π′, nullifer′)
that passes verification can be reduced to breaking either the
computational knowledge soundness of the zkSNARK Π or
the random oracle assumption on the hash function H . To
generate a valid proof π′, one must possess knowledge of the
corresponding witness, which consists of the secret key and
the Merkle path.

If an adversary could generate a valid proof π′ without
knowledge of the witness, this would violate the computational
knowledge soundness of the zkSNARK Π. Furthermore, any
attempt to forge a Merkle path or to reverse-engineer a secret
key from a public key would require finding a collision for the
hash function H . Such an attack is computationally infeasible
under the assumption that H is a random oracle.

Additionally, the nullifer used in each authentication is
unique and recorded by the system upon use. This prevents
Replay Attacks at the protocol level, where an adversary
eavesdrops on a legitimate user’s transmission and resubmits
it later.

Therefore, the success probability of Asec is bounded by the
probability of breaking either the knowledge soundness of Π or
the properties of H as a random oracle. As these probabilities
are negligible by definition, the adversary’s success probability
is bounded by a negligible function negl(λ).

B. Privacy Adversary

Definition 3 (User Guessing Game). The privacy of the
scheme Πauth is defined by the following game between a
challenger and a PPT adversary Apriv:

1) Setup: The challenger sets up the system as in the
security game, involving two honest users, user 0 and
user 1, with public keys pk0, pk1 ∈ pkset.

2) Challenge: The challenger flips a random bit b ∈ {0, 1}.
It then generates a valid proof πb and nullifier nulliferb
for user b. The challenger provides the adversary Apriv
with the public parameters (root, πset, pkset) along with
the challenge tuple (πb, nulliferb).

3) Guess: The adversary Apriv outputs a guess b′.
We say that the scheme preserves privacy if for any PPT
adversary Apriv, their advantage in winning the game is
negligible. The adversary wins if b′ = b.

Pr

[
b′ ← Apriv(root, nulliferb, πb, πset, pkset)

: b′ = b

]
≤ 1

2
+ negl(λ).

Theorem 2. If the zkSNARK Π is computationally zero-
knowledge and the hash function H is a random oracle, then
our authentication scheme Πauth preserves privacy according
to Definition 3.

Proof. (Sketch) To win the User Guessing Game, the adver-
sary Apriv must identify the user from the challenge informa-
tion. Any such attempt will fail for the following reasons:

1) The root: It is shared among all users and contains no
user distinguishing information.

2) The nulliferb: It is generated from a secret and a
fresh random value for each authentication. Due to
the properties of the random oracle H , the nullifiers
from different authentications by the same user have
no computational correlation. This prevents an adversary
from linking multiple actions to a specific user, ensuring
unlinkability.

3) The proof πb: The computational zero-knowledge prop-
erty of the zkSNARK Π ensures that the proof πb reveals
nothing about the witness used to generate it. Thus, the
proof is computationally indistinguishable from that of
any other user.

Since all user specific information available to the adversary
is computationally indistinguishable from random data, the
adversary cannot guess the user’s identity b with a probability
significantly better than random chance (1/2). This advantage
is bounded by the probability of breaking the zero-knowledge
property of Π or the random oracle property of H , which is
a negligible function.

V. IMPLEMENTATION

We implement our work using the details shown in Table I.
We choose Groth16 to implement our scheme, mainly due to
its smallest proof size in zkSNARK, which is 2048 bits long,
when implemented on BN254. We use Poseidon due to its
low constraint, which improves the proving time significantly
compared to using SHA256 in our Merkle Tree. We choose
the embedding vector length from 2 to 1024, as currently there
are many DNN model that provides embedding with higher
than 512 embedding length. We choose the Merkle Tree of
depth 10 (resp. 20), as it allows the system to possess 1024
users (resp. 1 million users) to register.

TABLE I
IMPLEMENTATION DETAILS.

Item Specification

Hardware Apple M1 CPU and 8GB RAM
Language Python 3.10.14
Toolkits ZoKrates 0.8.8, Hardhat v2.25.0
Key Libraries py-solc-x v2.0.3, web3.py v7.11.1,

numpy v1.26.4, poseidon-hash v0.1.4,
deepface v0.0.93

Parameters

Elliptic Curve BN254 [25]
Proof System Groth16
Hash Function Poseidon
Embedding Vector Length {21, 22, ..., 210}
Merkle Tree Depth {10, 20}
Distance Metric Cosine Distance

VI. EXPERIMENT

In this section, we will quantitatively measure our succinct
blockchain-based biometric authentication scheme in some of
its important metrics. As a baseline, we will also implement
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Fig. 3. Experimental evaluation results of zkSABER and BioZero.

BioZero [12] using a similar implementation, with some
modifications included to allow comparison. For example, we
implement their Pedersen Commitment using the multiplica-
tive group of Fq where q is the base prime in BN254. Thus,
each element in this multiplicative group will be of size 256
bits.

We will focus our measurement on 6 different metrics, each
capturing the scheme’s performance in a detailed manner. The
details of our evaluation metrics can be seen on Table II. We
repeat the measurement of each scheme 100 times and record
the value as written in the Figure. 3.

TABLE II
EVALUATION METRICS.

Metric Definition

Proof Generation Time Time to generate a proof π.
Proof Verification Time Time to verify a proof π.
Total Authentication Time Time taken to generate and verify a proof in

an off-chain environment.
Proof Size Data size of the proof π in bytes.
Verification Costs Gas consumed for proof verification.
Circuit Size Number of R1CS constraints.

As shown in Figure 3, the Proof Size of zkSABER was
observed to be constant, while its Verification Costs (Gas)
and Verification Time remained nearly constant with respect to
the increase in vector length. Specifically, the Proof Size was
consistently 0.312 KB, and the Verification Costs were ap-
proximately 287,900 gas. In contrast, each metric for BioZero
increased linearly with the vector length, reaching a Proof Size
of 56.375 KB and Verification Costs of 3.22 × 107 gas at a
dimension of 128.

This result clearly highlights the fundamental difference
in the protocol design of the two methods. Our scheme is
designed to achieve a constant verification cost by assigning
all the embedding vectors inside the private witness of zk-
SNARK. On the other hand, BioZero prioritizes simplifying
the zkSNARK circuit, in turn delegating the verification of
vector-length-dependent Pedersen Commitments to the on-
chain process, thereby causing its verification cost to increase
linearly. As we observed, if the gas cost for a single transaction
in Ethereum reaches 36M, it will be terminated due to the
block gas limit. We found that BioZero reaches this limit
when the embedding pass the 128 length, prohibiting longer
embedding vector for their approach.

As shown in Figure 3, zkSABER’s proof generation time,
along with its number of circuit constraints, increases gradu-
ally with the vector length. This reflects an intentional design
trade-off that accepts off-chain computational load in exchange
for on-chain efficiency. However, in terms of the total au-
thentication time, a performance improvement was observed
where zkSABER becomes faster than BioZero when the vector
length exceeds 128. Furthermore, increasing the Merkle tree
depth from 10 to 20 had only a slight impact on off-chain
performance and no impact on the verification costs, showing
our scheme’s scalability.

VII. CONCLUSION

We proposed zkSABER, a succinct blockchain-based au-
thentication scheme, enabling constant transaction gas cost
and proof size by leveraging the Groth16 and a Merkle Tree
with the Poseidon hash, supporting any length of embedding
vector. To support compatibility with existing deep neural
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network (DNN) models, we developed a quantization pipeline
that converts floating-point vectors into finite field elements,
producing inputs suitable for ZoKrates circuits. We provided
our security analysis against two different adversaries, a se-
curity and privacy adversary, asserting our scheme’s security
and privacy guarantees in a public blockchain environment.

We implemented both zkSABER and BioZero, allowing a
detailed quantitative comparison of their performance trade-
offs. Our experimental results confirm that zkSABER achieves
constant transaction gas cost, proof size, and verification
time, regardless of the embedding vector length. None of our
implementations exceeded the block gas limit, affirming the
practicality and future-proof compatibility of our scheme.

Nevertheless, the proving time of zkSABER remains a
primary performance bottleneck. This overhead, stemming
from our implementation with Groth16, could potentially be
reduced to logarithmic complexity while preserving succinct
verification by adopting linear-time zkSNARKs such as Orion
[26] or Brakedown [27]. Proving performance could be further
optimized by replacing the Merkle tree with lookup arguments
[28].

Further research directions include a rigorous security anal-
ysis of the quantization pipeline against side-channel and
model inversion attacks, as well as a comprehensive perfor-
mance evaluation on resource-constrained hardware, such as
IoT devices, to validate its practical viability. Addressing these
challenges is pivotal to the advancement of secure and scalable
on-chain verification frameworks.
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