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Abstract

This paper considers the packet recovery performance of forward error correction (FEC)
for video streaming services over wired-wireless networks. Focusing on a wireless base
station, we model it as a single-server queueing system with a Markovian service process
in which the state of the server alternates between Good and Bad states. The system has two
independent input processes: one is a general renewal input process and the other is a Pois-
son arrival process. We analyze the packet- and block-level loss probabilities to investigate
the recovery performance of FEC at block level. The analysis is validated with simula-
tion experiments driven by real traffic traces. Numerical examples show that the block-loss
probability is greatly affected by the system capacity and the mean Bad-state period, and
that the recovery performance of FEC deteriorates according to the fluctuation in the packet
transmission rate at a wireless base station.

Key words: Single-server queue with two input processes, Markovian service process,
forward error correction, general renewal input, block-loss probability.

1 Introduction

Recent advancement of video coding techniques and wide spread of broadband net-
works accelerate the development of real-time applications such as video stream-
ing, sports live broadcasting and web conference. With the rapid growth of wireless
networks, these applications are expected to be widely deployed over wireless net-
works. Because video applications have stringent delay constraint, many techniques
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have been studied to guarantee video image quality over wireless networks where
burst packet loss occurs due to mobility and interference.

There are two basic techniques for packet-loss recovery: Automatic Repeat reQuest
(ARQ) and Forward Error Correction (FEC). ARQ is a typical acknowledgement-
based error recovery technique. In ARQ, lost data packets are retransmitted by
the sender host. However, this retransmission mechanism is activated by receiving
duplicate acknowledgement (ACK) packets or timer time-out, causing a large end-
to-end delay. This large delay is not suitable for real-time applications such as video
streaming and web conference.

On the other hand, FEC is a well-known coding-based error recovery scheme [3,16].
In FEC, redundant data is generated from original data, and a sender host transmits
both the original and redundant data to a receiver host. When some part of the orig-
inal data is lost, it can be recovered from the redundant data at the receiver host if
the loss is below a prespecified level. In this paper, we focus on packet-level FEC
scheme [17]. WhenN redundant data packets are generated fromD original data
packets, the lost data can be recovered completely if the number of lost packets is
less than or equal toN . Because FEC requires no retransmission mechanism, it is
a suitable packet-loss recovery scheme for video applications with stringent delay
constraint.

With the recent development of optical networking technology such as wavelength
division multiplexing (WDM), the bottleneck of data transmission shifts from back-
bone networks to access ones (the last mile bandwidth bottleneck [12]). On the
other hand, wireless mesh networks (WMNs) have attracted considerable atten-
tion as a solution of the last mile issue for access networks [1]. WMNs consist of
wireless mesh routers and mesh clients, and are expected to support a variety of
applications to end users.

Now consider video streaming services over the wired-wireless network consisting
of optical backbone networks and wireless access networks. Here, video streaming
servers are placed on the backbone networks, while a client node is connected to
a wireless base station with one-hop wireless link. In this situation, the wireless
base station is likely to be the bottleneck of data transmission for video streaming
service due to interference and user mobility. The quality of service (QoS) of video
streaming over the wired-wireless network is significantly affected by the packet
loss process at the wireless base station. Note that data packets for video streaming
are sent to the client node at a constant bit rate. Because the optical backbone
networks provide a high-speed transmission, it is important to consider the case
where inter-arrival times of packets to the edge wireless base station are almost the
same.

In this paper, focusing on the wireless base station, we consider the packet recovery
performance of FEC at the wireless base station. We consider a single-server queue-
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ing system with finite buffer, in which the service time of a customer is governed
by a two-state Markovian service process. The system has two inputs: main traffic
and background traffic. Main traffic consists of original packets and FEC redundant
ones. We assume that the inter-arrival times of packets in main traffic are indepen-
dent and identically distributed (i.i.d.) according to a general distribution. On the
other hand, arriving packets in background traffic form a Poisson process. Note
that the assumption of main traffic enables us to describe various arrival processes
including constant inter-arrival times. We analyze the packet- and block-level loss
probabilities of main traffic, evaluating the recovery performance of FEC.

The rest of this paper is organized as follows. Section 2 gives an overview of the
previous studies on the performance analysis of FEC recovery. Section 3 describes
our analytical model, and Section 4 derives performance measures. Numerical ex-
amples are presented in Section 5, and finally Section 6 provides some conclusions.

2 Related work

It is well known that the recovery performance of FEC is significantly affected
by the packet loss process, and much effort has been devoted to the development
of adaptive QoS control schemes to improve the video quality [6,7,10,11]. The
relation between the recovery performance and the redundancy of FEC has also
been extensively studied in the literature. A pioneering work is [5] in which the
distribution of the number of lost packets within a block of packets is analyzed for
an M/M/1/K queue with first-in first-out (FIFO) discipline. Altman and Jean-Marie
[2] considered the loss probability of a block of packets, investigating the effect of
FEC redundancy on the block-loss probability. Note that the above works assumed
a single Poissonian source.

In terms of the generalization of the packet arrival process, Kawahara et al. [14]
considered a discrete-time finite-buffer queuing model with two arrival processes,
evaluating the recovery capability of FEC. In [14], main packet traffic consisting of
original and redundant packets is modeled as an interrupted Bernoulli process, and
background traffic is assumed as a Markov modulated Bernoulli process. Hellal
et al. [13] considered an M/M/1/K queue in which packets arrive at the system
from several independent sources, and analyzed the distribution of the number of
lost packets within a block of packets. In [13], they also extended the model to
the one where the sequences of service times and inter-arrival times of packets are
ergodic and the system capacity is equal to one, discussing the qualitative nature of
redundancy scheme. In [18], a technique combining priority-based cell discarding
and FEC was proposed for guaranteeing the video QoS over asynchronous transfer
mode (ATM) networks. The performance of the basic hybrid block-loss reduction
scheme was analyzed with an M/M/1/K queue in which cells from sessions using
FEC are multiplexed with cells from sessions without FEC, and several buffer-
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management policies were thoroughly investigated by simulation.

Dán et al. [8,9] considered the effect of the packet size distribution (PSD) on the
packet loss process in finite queueing systems with two input processes. In [8], they
considered the system with two input processes: one is a Markov-modulated Pois-
son process (MMPP) and the other is a Poisson one. The FEC performance was
numerically evaluated for deterministic and exponential PSDs. In [9], the loss pro-
cess of an MMPP+MMPP/Er/1/K queue was analyzed. The analysis was validated
by simulation experiments driven by traces measured in a backbone network for
the Internet. It was claimed that the PSD for evaluating FEC performance over the
current Internet can be well approximated by the exponential distribution.

In [15], focusing on the bottleneck edge router, we considered the packet recovery
performance of FEC for a single-server queueing system with finite buffer fed by
two input processes: one is a general renewal input process, and the other is Pois-
son arrival process. Assuming that the PSD is exponential, we analyzed the packet-
and block-level loss probabilities. It was found that the block-loss probability is
significantly improved by FEC when the system accommodates a small number of
packets. In this paper, focusing on the wireless base station, we extend the model
in [15] for investigating the recovery performance of FEC over wired-wireless net-
works.

3 GI+M/MSP/1/K queueing model

We consider the transmission of a data block consisting ofD packets. SupposeN
redundant packets are generated from the originalD packets, and a set ofM packets
are transmitted as main traffic, whereM = D + N . We assume that a packet loss
occurs only at the wireless base station. We also assume that if the number of lost
packets among theM packets is less than or equal toN , the original data block can
be retrieved at the destination by FEC decoding and otherwise cannot be retrieved,
resulting in a block loss.

We model the wireless base station as a FIFO single-server queueing system with
a buffer of capacityK − 1. Thus the total capacity of the system is equal toK.
The inter-arrival times of packets in main traffic are i.i.d with a general distribution
G(x). Background traffic is also multiplexed with main traffic at the system, and we
assume that packet arrivals in background traffic form a Poisson process with rate
λ. For the packet transfer process over the wireless link, we consider a Markovian
service process with two states “Good” and “Bad”, which was developed originally
in [4] for a wireless channel model. In the following, “Good” and “Bad” are denoted
by “G” and “B”, respectively. The lengths of G and B states are i.i.d. according to
exponential distributions with parametersα and β, respectively. While being in
state G (resp. B), the departure rate of packets is equal toµG (resp.µB), where
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µG > µB.

In what follows, we call the queueing system GI+M/MSP/1/K.

4 Derivation of performance measures

In this section, we first consider the packet-loss probability of main traffic. We
then derive the block-loss probability of a block, which consists ofD original data
packets andN redundant packets.

4.1 Packet-loss probability of main traffic

Let L(t) (t ≥ 0) denote the number of packets in the system at timet. Let S(t)
(t ≥ 0) denote the state of the server at timet. We assume thatL(t) andS(t)
are right-continuous and have left-hand limits, respectively. LetT̂ν (ν = 1, 2, . . . )
denote the arrival epoch of theνth packet in main traffic at the system. We assume
T̂1 = 0 hereafter. We then have

L(T̂ν) = min(L(T̂ν−) + 1, K), ν = 1, 2, . . . , (1)

S(T̂ν) = S(T̂ν−), ν = 1, 2, . . . . (2)

Letπl(t) = (πl,G(t), πl,B(t)) (l = 0, 1, . . . , K), whereπl,s(t) = Pr[L(t) = l, S(t) =
s] for s = G,B. From (1) and (2), we have

π0(T̂ν) =0, (3)

πl(T̂ν) = πl−1(T̂ν−), l = 1, 2, . . . , K − 1, (4)

πK(T̂ν) = πK−1(T̂ν−) + πK(T̂ν−). (5)

Let π(t) = (π0(t),π1(t), . . . , πK(t)). LetΛ denote a2(K +1)×2(K +1) matrix
such that

Λ =




O I2 O . . . O O

O O I2
. .. O O

...
...

. .. . ..
...

...

O O O
. .. I2 O

O O O . . . O I2

O O O . . . O I2




,
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Fig. 1. State transition diagram of(L(t), S(t)).

whereI2 is a2× 2 identity matrix. It then follows from (3), (4) and (5) that

π(T̂ν) = π(T̂ν−)Λ, ν = 1, 2, . . . . (6)

Recall here that during time interval (T̂ν , T̂ν+1), there are no arrivals from main
traffic and packets from background traffic arrive at the system according to a Pois-
son process with rateλ. Recall also that the service process is Markovian. Thus
during time interval (̂Tν , T̂ν+1), {(L(t), S(t)); t ≥ 0} is a continuous-time bivariate
Markov chain (see Fig. 1).

Arranging the states of the bivariate Markov chain in lexicographical order, its gen-
eratorQ is of size2(K + 1)× 2(K + 1) and is given by

Q =




A1 λI2 O . . . O O

B A2 λI2
.. .

...
...

O B A2
.. . O O

O O B
.. . λI2 O

...
...

.. . .. . A2 λI2

O O O
.. . B A3




,

where

A1 =



−(α + λ) α

β −(β + λ)


 , A2 =



−(α + λ + µG) α

β −(β + λ + µB)


 ,

A3 =



−(α + µG) α

β −(β + µB)


 , B =




µG 0

0 µB


 .
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Because inter-arrival times of main traffic are i.i.d. with distributionG(x), we have

π(T̂ν+1−) = π(T̂ν)Γ, ν = 1, 2, . . . , (7)

where
Γ =

∫ ∞

0
exp(Qx)dG(x).

It follows from (6) and (7) that

π(T̂ν+1−) = π(T̂ν−)ΛΓ, ν = 1, 2, . . . . (8)

Let Tm (m = 1, 2, . . . ) denoteT̂ν+m. In what follows, settingν → ∞, we assume
that the system already reaches the steady state at timeT1. For simplicity, we denote
πl(T1−) andπ(T1−) by π−

l andπ−, respectively. It follows from (8) that

π− = π−ΛΓ, π−e = 1,

wheree denotes a column vector of ones with an appropriate dimension. LetPloss

denote the packet-loss probability of main traffic. Note here that a packet in main
traffic is lost only when the queue length on arrival is equal toK. We then have

Ploss = π−
Ke.

4.2 Block-loss probability

This subsection derives the block-loss probabilityP
(B)
loss, which is defined as the

probability that the FEC decoding fails to retrieve data packets of a block, i.e.,
the number of lost packets amongM packets of a block is greater than that of
the redundant packets,N . We focus on an arbitrary block and call it tagged block
hereafter. We assume that theM packets of the tagged block arrive continuously
to the system at timeT1 throughTM . We then call the packet arriving at timeTm

(m = 1, 2, . . . , M ) packetm. We defineL−m andLm (m = 1, 2, . . . ,M ) as the
number of packets in the system at timeTm− andTm, respectively, i.e.,L−m =
L(Tm−) andLm = L(Tm). We also defineS−m andSm (m = 1, 2, . . . ,M ) as the
states of the server at timeTm− andTm, respectively. LetNm (m = 1, 2, . . . , M )
denote the number of lost packets among packet 1 throughm. Let p(m, k) =
(p1(m, k), p2(m, k), . . . , pK(m, k)) (m = 0, 1, . . . , M, k = 0, 1, . . . , M ), where
pl(m, k) (l = 1, 2, . . . , K) denotes a1× 2 vector such that

pl(m, k) = (Pr[Nm = k, Lm = l, Sm = G], Pr[Nm = k, Lm = l, Sm = B]) .

The block-loss probabilityP (B)
loss is then given by

P
(B)
loss = Pr[NM > N ] = 1−

N∑

k=0

p(M,k)e.
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In the rest of this subsection, we establish the recursion for thep(m, k). We first
derivep(1, k). If L−1 < K, packet 1 can enter the system and thereforeL1 = L−1 +1.
Note thatS1 = S−1 . Thuspl(1, 0) (l = 1, 2, . . . , K) is given by

pl(1, 0) = (Pr[L1 = l, S1 = G], Pr[L1 = l, S1 = B])

= (Pr[L−1 = l − 1, S−1 = G], Pr[L−1 = l − 1, S−1 = B])

= π−
l−1. (9)

On the other hand, ifL−1 = K, packet 1 is lost andL1 = K. Therefore we have

pl(1, 1) =





0, l = 1, 2, . . . , K − 1,

π−
K , l = K.

(10)

BecauseN1 ≤ 1, we obtain

pl(1, k) = 0, ∀k = 2, 3, . . . , M, ∀l = 1, 2, . . . , K. (11)

From (9), (10) and (11), we have

p(1, k) =





(π−
0 , π−

1 , . . . , π−
K−1), k = 0,

(0,0, . . . ,0,π−
K), k = 1,

0, k = 2, 3, . . . , M.

(12)

Next, we derivep(m, k) for m = 2, 3, . . . , M . Let Ai,j(σ) (i, j = 1, 2, . . . , K)
denote a2× 2 matrix such that

Ai,j(σ) =




Pr[(j,G)m, Θm = σ | (i, G)m−1] Pr[(j, B)m, Θm = σ | (i, G)m−1]

Pr[(j,G)m, Θm = σ | (i, B)m−1] Pr[(j, B)m, Θm = σ | (i, B)m−1]


 ,

where(l, s)m denotes event{Lm = l, Sm = s}, and whereΘm = 1 if packetm is
lost, and otherwiseΘm = 0. We then defineA(σ) (σ = 0, 1) as

A(σ) =




A1,1(σ) A1,2(σ) · · · A1,K(σ)

A2,1(σ) A2,2(σ) · · · A2,K(σ)
...

...
. . .

...

AK,1(σ) AK,2(σ) · · · AK,K(σ)




.
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It is easy to see that form = 2, 3, . . . ,M , Nm ≤ m and therefore

p(m, k) =





p(m− 1, 0)A(0), k = 0,

p(m− 1, k − 1)A(1) + p(m− 1, k)A(0), k = 1, 2, . . . , m,

0, k = m + 1,m + 2, . . . , M,

from which and (12) we can computep(m, k)’s.

Finally we close this subsection by derivingA(σ) (σ = 0, 1). LetΓi,j (i = 0, 1, . . . , K,
j = 0, 1, . . . , K) denote a2× 2 matrix such that

Γ =




Γ0,0 Γ0,1 · · · Γ0,K

Γ1,0 Γ1,1 · · · Γ1,K

...
...

.. .
...

ΓK,0 ΓK,1 · · · ΓK,K




.

Note that ifL−m < K, Θm = 0, Lm = L−m + 1 andSm = S−m. We then have

Ai,j(0) =




Pr[(j − 1, G)−m | (i, G)m−1] Pr[(j − 1, B)−m | (i, G)m−1]

Pr[(j − 1, G)−m | (i, B)m−1] Pr[(j − 1, B)−m | (i, B)m−1]




=Γi,j−1, (13)

where(l, s)−m denotes event{L−m = l, S−m = s}. Further because{Θm = 1} is
equivalent to{Lm = L−m = K}, we have

Ai,j(1) =





O, j = 1, 2, . . . , K − 1,

Γi,K , j = K.
(14)

It follows from (13) and (14) that
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A(0) =




Γ1,0 Γ1,1 · · · Γ1,K−1

Γ2,0 Γ2,1 · · · Γ2,K−1

...
...

.. .
...

ΓK,0 ΓK,1 · · · ΓK,K−1




,

A(1) =




O · · · O Γ1,K

O · · · O Γ2,K

...
.. .

...
...

O · · · O ΓK,K




.

5 Numerical examples

In this section, we focus on video streaming which is one of the most important
real-time applications, and evaluate the recovery performance of FEC using the
analytical results derived in the previous section. It is assumed that the transmission
rate of streaming data is 4 Mb/s, and that the video frame rate is 30 frame/s. The
size of a packet is 500 bytes. A frame hasD = 34 original data packets, and a
block has the same number of packets as that of a frame. It is also assumed that the
inter-arrival times of packets in main traffic are constant. We assume that the mean
Good-state period is 19 times longer than the Bad-state one, i.e.,β/α = 19. When
the output transmission rate of the wireless base station in Good state (resp. Bad
state) is 40 Mb/s (resp. 4 Mb/s), the corresponding service rate of a 500 byte-packet
µG (resp.µB) is 1.0× 104 (resp.1.0× 103) [packet/s]. We define FEC redundancy
asN/D. Note that when the sender host addsN redundant packets toD original
data packets, the resulting packet transmission rate is(D+N)/D times larger than
the original one.

We validate the analytical model by simulation experiments driven by traces of
the NLANR repository [19]. We conducted simulation experiments using the C
program that we developed. The trace data was used for the inter-arrival times of
background traffic, and the other settings are the same as the analysis. Table 1 shows
the details of the trace data used for simulation experiments in the paper. Figure 2
illustrates the average volume of the trace data. As shown in Fig. 2, two subsets

Table 1
General information about the trace used for simulation experiments.

Name Original filename Date/Capt. on Duration

Leipzig-II 20030221-121359-0.g2 February 2003/OC3 164 min.

10



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  200  400  600  800  1000  1200  1400  1600  1800

A
ve

ra
ge

 V
ol

um
e 

of
 T

ra
ce

 (
M

bp
s)

Time (sec)

 Trace 1  Trace 2 Trace 1  Trace 2 Trace 1  Trace 2 Trace 1  Trace 2
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Fig. 3. Histogram of trace data and the corresponding exponential probability density func-
tion.

of the trace data were used for the simulation experiments. Trace 1 corresponds to
the first 90 seconds of the original trace data. Trace 2 represents the 90 seconds of
the trace data whose volume varies greatly. Each trace was used for the inter-arrival
times of packets in background traffic.

Figure 3 illustrates the histogram of the trace data and the probability density func-
tion of the exponential distribution whose arrival rate is equal to that of the trace
data. Fig. 3(a) (resp. 3(b)) shows the histogram of trace 1 (resp. trace 2). When the
packet size is 500 bytes, the volume of trace 1 (resp. trace 2 ) is equal to 24.4 Mb/s
(resp. 26.9 Mb/s) and the corresponding arrival rateλ is6.10×103 (resp.6.73×103)
[packet/s]. The variance of the packet inter-arrival times for trace 1 (resp. trace 2)
is 3.14 × 10−2 (resp.2.78 × 10−2), while that for the exponential distribution is
2.68 × 10−2 (resp.2.21 × 10−2), i.e., the variance of the traces is greater than that
of the Poisson process.
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Table 2
Basic parameters.

Parameter Value

Number of original data packets in a blockD 34

Number of redundant data packets in a blockN 0, 1, 3

Ratio ofβ to α (β/α) 19

Service rate of a 500 byte-packet in Good stateµG 1.0× 104

Service rate of a 500 byte-packet in Bad stateµB 1.0× 103

Arrival rate of background trafficλ (Trace 1) 6.10× 103

Arrival rate of background trafficλ (Trace 2) 6.73× 103

System SizeK 10, 100

5.1 Impact of transmission rate in Good state

In this subsection, we investigate how the transmission rate in Good state affects
both the block- and packet-level loss probabilities. Figure 4 illustrates the block-
loss probability against the transmission rate in Good state in cases of the system
capacityK = 10 and100. In eachK, we calculated the block-loss probabilities for
N = 0, 1 and 3. Analytical results are shown with lines, compared with simulation
results represented by dots with 95% confidence intervals. Figure 4(a) (resp. 4(b))
shows the result of trace 1 (resp. trace 2), whose average volume of background
traffic is 24.4 Mb/s (resp. 26.9 Mb/s). When the transmission rate in Good state is
γ Mb/s, the corresponding packet service rateµG is equal toγ × 250 [packet/s].
The transmission rate in Bad state is 4 Mb/s (µB = 1.0 × 103 [packet/s]), and the
mean Bad-state period is 5 ms. Table 3 shows the difference between analysis and
simulation in Figures 4(a) and 4(b) when the transmission rate in Good state is
50 Mb/s. In this table, “Difference” is calculated by subtracting “Analysis” from
“Simulation”.

First, we observe from Fig. 4 that the analytical results exhibit a good agreement
with the simulation results for a large transmission rate in Good state. It is also
observed from Fig. 4 and Table 3 that the simulation results of trace 1 agree better
with analytical ones than those of trace 2. This is because the variance of volume of
trace 2 is larger than that of trace 1. Furthermore, Fig. 4 shows that the block-loss
probability decreases monotonically and then remains constant when the transmis-
sion rate in Good state is large. This is because a large transmission rate makes the
traffic intensity small, resulting in a small block-loss probability. This result im-
plies that the block-loss probability is not greatly affected by the transmission rate
in Good state.
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Fig. 4. Block-loss probability vs. transmission rate in Good state.

In terms of FEC recovery performance, when the transmission rate in Good state
increases, the block loss probability forK = 100 rapidly converges, while that for
K = 10 decreases gradually. Because the traffic intensity in Bad state is larger than
that in Good state, the burstiness of the loss process in Bad state is larger than that
in Good state. This implies that FEC is not effective for the packet loss in Bad state.
When the system capacity is small, the event of packet loss occurs not only in Bad

13
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Fig. 5. Packet-loss probability of main traffic vs. transmission rate in Good state.

state but also in Good state. When the transmission rate in Good state is large, the
packet-loss probability in Good state decreases, resulting in high burstiness of loss
process. This high burstiness degrades the recovery performance of FEC.

Figure 5 shows the packet-loss probability of main traffic against the transmission
rate in Good state under the same condition as in Fig. 4. In Fig. 5, the packet
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Table 3
Difference between analysis and simulation. (The transmission rate in Good state: 50 Mb/s)

Trace 1 Trace 2

K N Simulation Analysis Difference Simulation Analysis Difference

10 0 0.307307 0.257376 0.049931 0.385827 0.288339 0.097488

10 1 0.204144 0.199948 0.004196 0.242284 0.211788 0.030496

10 3 0.129754 0.128596 0.001158 0.142798 0.136060 0.006738

100 0 0.017704 0.016059 0.001645 0.025046 0.021932 0.003114

100 1 0.013960 0.013221 0.000739 0.019711 0.018113 0.001598

100 3 0.008953 0.008434 0.000519 0.012988 0.011624 0.001364

loss probability of main traffic for bothK = 10 and 100 decreases monotonically
and then remains constant when the transmission rate in Good state is large. Note
that the packet loss is likely to occur only in Bad state when the transmission rate
in Good state is large. As a result, the transmission rate in Good state has small
effect on the packet-loss probability. In Fig. 5, the packet-loss probability of main
traffic is large when the number of redundant packets increases. This is simply
because adding redundant packets enlarges the traffic intensity. Note here that the
packet-loss probability of main traffic is not greatly affected by the increase in FEC
redundant packets. The above results imply that the packet-loss process of main
traffic is not greatly affected by the transmission rate in Good state.

Note that in Figs. 4 and 5, the analysis underestimates both the block- and packet-
loss probabilities in comparison with simulation. In particular, the discrepancy be-
tween analysis and simulation is large for a small transmission rate in Good state.
This is mainly because the packet interarrival times of the trace data, which are used
for background traffic, are more correlated than the Poisson process assumed for the
analytical model. It is well known that a Poisson input process gives an optimistic
estimate of performance measures such as the packet loss probability and delay
[18]. Though the analysis gives underestimated values of block- and packet-loss
probabilities, a remarkable point here is that the analytical results are almost the
same as the simulation results when the transmission rate in Good state is greater
than 50 Mb/s. This implies that the analysis can be applied to a wired-wireless
network whose wireless part is supported by IEEE 802.11a/g.

5.2 Impact of transmission rate in Bad state

In this subsection, we investigate how the transmission rate in Bad state affects
the block-loss probability. Figure 6 shows the block-loss probability against the
transmission rate in Bad state in cases ofK = 10, 100 andN = 0, 1, 3. The Figure
6(a) (resp. 6(b)) shows the case of trace 1 (resp. trace 2), whose average volume of
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Fig. 6. Block-loss probability vs. transmission rate in Bad state.

background traffic is 24.4 Mb/s (resp. 26.9 Mb/s). The transmission rate in Good
state is 40 Mb/s (µG = 1.0 × 104 [packet/s]), and the mean Bad-state period is 5
ms.

It is observed from Fig. 6 that the simulation results of trace 1 agree well with ana-
lytical ones in comparison with those of trace 2, and that the block-loss probability
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for trace 2 is larger than that for trace 1. This is because the average volume of trace
2 is larger than that of trace 1. Figure 6 shows that the analytical results agree well
with the simulation ones for a small transmission rate in Bad state. The decrease
in the transmission rate in Bad state makes the variance of the transmission time
large. This large variance of the transmission time affects the queue length distribu-
tion, resulting in the decrease in the difference between the results of analysis and
those of simulations. From Figs. 4 and 6, we observe that the block-loss probability
by analysis is almost the same as that by simulation when the transmission rate of
Good state greatly differs from that of Bad state.

Figure 6 shows that the block-loss probability forK = 10 is likely to remain
constant when the transmission rate in Bad state is large. On the other hand, the
block-loss probability forK = 100 decreases gradually against the transmission
rate in Bad state. When the system capacity is large, a packet loss is likely to occur
in Bad state. This implies that the block-loss probability is greatly affected by the
transmission rate in Bad state. On the other hand, when the system capacity is
small, a packet loss occurs in either Good state or Bad state. As a result, the effect
of the transmission rate in Bad state on the block-loss probability is small. These
results imply that the block-loss probability is affected by the system capacity and
the transmission rate in Bad state.

In terms of FEC recovery performance, Fig. 6 shows that the block-loss probability
for K = 10 is more improved by FEC than that forK = 100. In addition, the
block-loss probabilities for bothK ’s are not greatly improved by FEC when the
transmission rate in Bad state is small. This is because a burst loss of packets is
likely to occur in Bad state with a small transmission rate. This result implies that
the recovery performance of FEC is limited for the wireless base station where the
transmission rate of a packet greatly varies.

5.3 Impact of volume of background traffic

In this subsection, we investigate how the volume of background traffic affects
the block-loss probability. Figure 7 illustrates the block-loss probability against
the volume of background traffic in cases ofK = 10 and 100. In eachK, we
calculated the block-loss probabilities forN = 0, 1 and 3. When the volume of
background traffic isη Mb/s, the corresponding packet arrival rateλ is equal to
η× 250 [packet/s]. The transmission rate in Good state (resp. Bad state) is 40 Mb/s
(resp. 4 Mb/s), and the mean Bad-state period is 5 ms. Note that Figure 7 shows
only analytical results because the volume of the trace data used for simulation
experiments is limited to 24.4 Mb/s and 26.9 Mb/s.

It is observed from Fig. 7 that the block-loss probability increases monotonically
when the volume of background traffic is large. This is because a large volume of
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Fig. 7. Block-loss probability vs. volume of background traffic.

background traffic makes the traffic intensity large, resulting in a large block-loss
probability. In case ofK = 100, the block-loss probability exhibits rapid increases
when the volume of background traffic is 5 Mb/s and 35 Mb/s. On the other hand,
the block-loss probability increases gradually when the volume is around 20 Mb/s.
Because the transmission rate in Bad state is much smaller than that in Good state,
a packet loss is likely to occur in Bad state rather than in Good state. When the vol-
ume of background traffic increases, packet losses frequently occur even in Good
state. In Fig. 7, this emerges at around 35 Mb/s in background traffic.

5.4 Impact of Bad-state period

In this subsection, we investigate how the mean Bad-state period affects the block-
loss probability. Remind that the mean Good-state period is 19 times longer than
the Bad-state one, i.e.,β/α = 19. Figure 8 shows the block-loss probability against
the mean Bad-state period in cases ofK = 10 and 100. In eachK, we calculated
the block-loss probabilities forN = 0, 1 and 3. The volume of background traffic is
24.4 Mb/s. The transmission rate in Good state (resp. Bad state) is 40 Mb/s (resp. 4
Mb/s).

It is observed from Fig. 8 that the analytical results agree well with the simulation
ones for a long Bad-state period. In Fig. 8, we observe that the block-loss probabil-
ity for K = 100 increases rapidly against the mean Bad-state period. On the other
hand, the block-loss probability forK = 10 decreases gradually. When the system
capacity is large, a packet loss is likely to occur only in Bad state. Therefore, when
the Bad-state period is long, the packet-loss probability (and hence the block-loss
probability) increases monotonically. When the system capacity is small, on the
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Fig. 8. Block-loss probability vs. mean time in Bad state.

other hand, the packet loss process depends on not only the Bad-state period but
also the Good-state one. Noting that the ratio of the mean Good-state period to the
Bad-state one is constant, the increase in the Bad-state period makes the Good-
state period long. A longer duration staying in Good state causes less packet losses,
resulting in a monotonic decrease in the block-loss probability forK = 10. The
above results imply that the block-loss probability is greatly affected by the system
capacity and the mean Bad-state period.

Note in Fig. 8 that each block-loss probability converges when the mean Bad-state
period is sufficiently long in bothK = 10 and 100. Because the mean Good-state
period is 19 times longer than the Bad-state one, the queue length of the system in
Good state is likely to be small when the mean Bad-state period is long. Therefore,
a packet loss is likely to occur only in Bad state, making the block-loss probability
close to the ratio of the mean Bad-state period to the mean cycle consisting of a
Good-state period and a Bad-state period. In fact, we observe from Fig. 8 that the
block loss probability approaches the value ofα/(α + β) = 0.05.

Figure 9 shows the minimum FEC redundancy against the mean Bad-state period.
The minimum FEC redundancy is defined as the minimum redundancy in units
of packets to keep the block loss probability smaller than a prespecified valuep.
The minimum FEC redundancy was calculated forp = 10−2, 10−3 and10−4. We
observe from Fig. 9 that the minimum FEC redundancy forK = 100 is smaller than
that forK = 10. This is because the packet-loss probability with a large buffer is
smaller than that with a small one. It is also observed from Fig. 9 that the minimum
FEC redundancy increases rapidly when the mean Bad-state period is long. When
the Bad-state period is long, a burst loss of packets is likely to occur in Bad state.
This high burstiness degrades the recovery performance of FEC, resulting in a large
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Fig. 9. Block-loss probability vs. ratio of Good-state period to Bad-state period.

minimum FEC redundancy.

Figure 10 represents the block-loss probability againstβ/α, the ratio of Good-state
period to Bad-state one, in cases ofK = 10 and100. We set1/α = 50 ms, and
1/β varies from1 ms to10 ms. Note thatβ/α lies in the range 10 to 50. In each
K, we calculated the block-loss probabilities forN = 0, 1 and 3. The volume of
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Fig. 10. Block-loss probability vs. ratio of Good-state period to Bad-state period.

background traffic is 24.4 Mb/s, and the transmission rate in Good state (resp. Bad
state) is 40 Mb/s (resp. 4 Mb/s).

In Fig. 10, the block-loss probability becomes small with the increase inβ/α for
each set ofK andN , as expected. In terms of the FEC redundancy, the block-
loss probability also decreases with the increase inN . A remarkable point here is
that the block-loss probability forK = 100 is significantly decreasing againstβ/α
in comparison with that forK = 10. Note that the increase inβ/α implies the
improvement of the wireless link condition. Therefore, this result suggests that the
block-loss probability for the system with a large buffer significantly decreases as
the quality of the wireless link is improved.

Figure 11 shows the the minimum FEC redundancy againstβ/α. The minimum
FEC redundancy was calculated forp = 10−2, 10−3 and10−4. The other parameter
values are the same as those in Fig. 10. Figure 11(a) represents the case forK =
10, while the block-loss probabilities forK = 100 are shown in Fig. 11(b). It is
observed from both the figures that the minimum FEC redundancy is decreasing
whenβ/α is large. We also observe that the minimum FEC redundancy forK =
100 is greatly smaller than that forK = 10. This also implies the effectiveness of a
large buffer for improving the block-loss probability.

5.5 Impact of system capacity

Finally, we investigate how the system capacity affects the block-loss probability.
We calculated the block-loss probabilities forN = 0, 1 and 3. The transmission rate
in Good state (resp. Bad state) is 40 Mb/s (resp. 4 Mb/s), and the mean Bad-state

21



 0

 0.2

 0.4

 0.6

 0.8

 1

 10  15  20  25  30  35  40  45  50

M
in

im
u

m
 F

E
C

 R
e
d

u
n

d
a

n
c
y

Ratio of Good state period to Bad state period

Analysis K=10 Ploss
(B)<10-2

Analysis K=10 Ploss
(B)<10-3

Analysis K=10 Ploss
(B)<10-4

Simulation K=10 Ploss
(B)<10-2

Simulation K=10 Ploss
(B)<10-3

Simulation K=10 Ploss
(B)<10-4

(a)K = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  15  20  25  30  35  40  45  50

M
in

im
u
m

 F
E

C
 R

e
d
u

n
d

a
n

c
y

Ratio of Good state period to Bad state period

Analysis K=100 Ploss
(B)<10-2

Analysis K=100 Ploss
(B)<10-3

Analysis K=100 Ploss
(B)<10-4

Simulation K=100 Ploss
(B)<10-2

Simulation K=100 Ploss
(B)<10-3

Simulation K=100 Ploss
(B)<10-4

(b) K = 100

Fig. 11. Block-loss probability vs. ratio of Good-state period to Bad-state period.

period is 5 ms. The volume of background traffic is 24.4 Mb/s.

It is observed from Fig. 12 that the block-loss probability decreases at a constant
rate when the system capacity is large. This implies that the block-loss probability
is greatly affected by the system capacity. We also observe from Fig. 12 that the
decay rate of the block-loss probability for eachN is constant. This result suggests
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Fig. 12. Block-loss probability vs. system capacity.
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Fig. 13. Minimum FEC redundancy vs. system capacity.

that the block-loss probability is greatly improved by the system size, rather than
FEC. Noting that a large buffer of the wireless base station makes the packet delay
long when the packet-transmission scheduling is FIFO.

Figure 13 illustrates the minimum FEC redundancy against the system capacity. In
Fig. 13, the minimum FEC redundancy decreases gradually when the system ca-
pacity is large. This result implies that the minimum FEC redundancy is dominated
by the buffer size of the wireless base station. In other words, the FEC redundancy
should be carefully determined by taking into consideration the buffer size of the
wireless base station.
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6 Conclusions

In this paper, we considered the recovery performance of FEC for video stream-
ing services over wired-wireless networks. We modeled a wireless base station
as a GI+M/MSP/1/K queue. The packet- and block-level loss probabilities were
analyzed through a continuous-time Markov chain. It was shown from numerical
examples that the block-loss probability is greatly affected by the system capacity
and the mean Bad-state period. It was observed that the recovery performance of
FEC deteriorates according to the fluctuation in the packet transmission rate at the
wireless base station. It was also found that the block-loss probability is greatly
improved by the system size, rather than FEC. When the packet scheduling of the
buffer is FIFO, however, a large buffer causes a long packet delay. In video stream-
ing services, a long packet delay also degrades the user-perceived video quality.
Therefore, an appropriate packet scheduling should be adopted for a large-buffered
wireless base station in order to support delay-sensitive application.
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