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SUMMARY It has been reported that IP packet traffic ex-
hibits the self-similar nature and causes the degradation of net-
work performance. Therefore it is crucial for the appropriate
buffer design of routers and switches to predict the queueing be-
havior with self-similar input. It is well known that the fitting
methods based on the second-order statistics of counts for the
arrival process are not sufficient for predicting the performance
of the queueing system with self-similar input. However recent
studies have revealed that the loss probability of finite queuing
system can be well approximated by the Markovian input models.
This paper studies the time-scale impact on the loss probability
of MMPP/D/1/K system where the MMPP is generated so as
to match the variance of the self-similar process over specified
time-scales. We investigate the loss probability in terms of sys-
tem size, Hurst parameters and time-scales. We also compare the
loss probability of resulting MMPP/D/1/K with simulation. Nu-
merical results show that the loss probability of MMPP/D/1/K
are not significantly affected by time-scale and that the loss prob-
ability is well approximated with resulting MMPP/D/1/K.
key words: internet traÆc modeling, self-similarity, �tting,

MMPP/D/1/K, loss probability

1. Introduction

Recently a number of high-quality, high-resolution mea-
surements of Internet traffic have been carried out and
analyzed. They have shown that traffic from those net-
works appears to be self-similar with long-range depen-
dence (LRD) [3], [6]. Self-similar traffic is characterized
by that the correlation never vanishes in a large time-
scale. Its traffic looks the same regardless of time-scales
over a long range interval. This fractal behavior makes
traffic very bursty. These properties of self-similar traf-
fic are quite different from those of traditional traf-
fic models such as Poisson process and Markovian ar-
rival process (MAP ) [9]. This observation has initiated
studies of new models such as chaotic maps, fractional
Brownian motion (FBM) and fractional autoregressive
integrated moving average (FARIMA) [3]. They can
describe the self-similar behavior in a relatively sim-
ple manner. However, queueing theoretical techniques
developed in the past are hardly applicable to these
models.
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On the other hand, a number of models based on
traditional traffic models have been proposed. One ap-
proach is to emulate self-similarity over a certain range
of time-scales with finite state Markovian models. In
[10], we have proposed a fitting method for self-similar
traffic in terms of MMPP . Our fitting method is based
on [1] where traffic is modeled by the superposition of
several two state MMPP s. In [1], the authors proposed
the fitting method which is mainly focused on the co-
variance structure of the second-order self-similar pro-
cess. More precisely, the parameters of MMPP are de-
termined so as to match the autocorrelation function
which is approximately evaluated. In our method, how-
ever, the parameters are determined so as to match the
variance of measured traffic which is exactly evaluated.
In the following, we call the resulting MMPP a pseudo
self-similar process.

It is well known that the queueing performance de-
teriorates with self-similar traffic whose Hurst parame-
ter is between 0.5 and 1, i.e., LRD traffic [3]. Hence
it is important for the appropriate buffer design of
routers and switches to predict the queueing behav-
ior under self-similar traffic with LRD∗. In general, the
fitting methods based on the second-order statistics of
counts for the arrival process are not sufficient for pre-
dicting the queueing performance [1]. In our previous
study [10], we studied the queueing system with infi-
nite buffer and pseudo self-similar input. Numerical
results showed that our fitting method works well in
the sense of imitating statistical characteristics of self-
similar traffic and that it does not work well for predict-
ing the queueing behavior with resulting MMPP/D/1
even when the Hurst parameter is moderate.

Recently, [4] discussed the impact of the LRD on
the buffer occupancy and indicated that LRD does not
affect the buffer occupancy when the busy periods of
the system are not large. In [8], the authors considered

∗Note that sometimes the actual router architecture is
modeled as a queuing system with multiple servers and a
finite single-buffer. In general, the queueing system with
multiple servers whose service time distribution is general is
not analyzable. In this paper, we focus on the single-server
queueing system with finite buffer and self-similar input and
discuss the possibility of prediction for loss probability with
the analytical model.
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the critical time scale (CTS) and showed that the buffer
behavior at the time-scale beyond the CTS is not sig-
nificantly affected. Therefore, there is a possibility of
accurate prediction of the queueing behavior using the
fitting method based on the second-order statistics of
counts for the arrival process if the appropriate time-
scale is taken into consideration.

In this paper, we consider the time-scale impact
on the queue length distribution using an MMPP gen-
erated so as to match the variance over specified time-
scales. We use our fitting method for imitating self-
similar traffic with LRD and consider the resulting
MMPP/D/1/K system. We investigate the loss proba-
bility in terms of system capacity, Hurst parameter and
time-scales.

This paper is organized as follows. In Sect. 2, we
overview the characteristics of the self-similar process.
In Sect. 3, we present the variance fitting method for
the exact self-similar process. In Sect. 4, we summa-
rize the analytical results of MAP/G/1/K, which is the
generalization of MMPP/D/1/K. In Sect. 5, we show
several numerical examples for the loss probability of
MMPP/D/1/K and illustrate the effects of time-scale,
Hurst parameter and the system size. Finally, some
concluding remarks are given in Sect. 6.

2. Self-Similar Process

In this section, we overview the concept of self-
similarity of the stochastic process. First, we summa-
rize Cox’s definitions of self-similarity [2] and then, we
show the equivalent definitions to those of Cox.

We consider a second-order stationary processX =
{Xt : t = 1, 2, ...} with the variance σ2 and the auto-
correlation function r(k), where r(k) is given as

r(k) =
Cov(Xt, Xt+k)

Var(Xt)
.

In the context of packet traffic, Xt corresponds to the
number of packets that arrive during the tth time slot.
We also consider a new sequence of X

(m)
t which is

obtained by averaging the original sequence in non-
overlapping blocks. That is,

X
(m)
t =

1
m

m∑
i=1

X(t−1)m+i, t = 1, 2, . . . .

The new sequence is also a second-order stationary pro-
cess with the autocorrelation function r(m)(k).

Let δ2 denote the central second difference opera-
tor defined by that for any function f(x),

δ2(f(x))={f(x+ 1)−f(x)}−{f(x)−f(x−1)}.

Then, definitions of self-similar process are given by the
following.

Definition 2.1: X is called exactly second-order

self-similar with the Hurst parameter H = 1 − β/2 if

r(k) =
1
2
δ2(k2−β). (1)

Definition 2.2: X is called asymptotically second-
order self-similar with the Hurst parameter H = 1−β/2
if

r(m)(k) → 1
2
δ2(k2−β), as m → ∞. (2)

Note that (1) implies that for all m = 1, 2, . . . ,

r(m)(k) = r(k). (3)

We are interested in the range 0.5 < H < 1 because
the process has the long-range dependence. In the case
that H = 0.5, X is a second-order pure noise with
Var(X(m)) = Var(X)/m.

Let L(x) denote the slowly varying function at in-
finity, i.e. for any n > 0,

lim
x→∞

L(nx)
L(x)

= 1.

We can define the self-similar process with the variance
of the averaged process equivalent to 2.1 and 2.2. The
readers are referred to [10], [13] for details.

Definition 2.3: X is called exactly second-order
self-similar with the Hurst parameter H = 1 − β/2 if

Var(X(m)) = σ2m−β . (4)

Definition 2.4: X is called asymptotically second-
order self-similar with the Hurst parameter H = 1−β/2
if

Var(X(m)) ∼ L(m)m−β, as m → ∞.

In our fitting method, we consider the self-
similarity under Definition 2.3, that is, we develop the
fitting method using (4).

3. Variance Fitting Method

In this section we describe the process of determining
the parameters of MMPP s so as to mimic the self-
similar process [10]. That is, their values are obtained
so as to match the variance over several time-scales.

We use a continuous-time MMPP for modeling
self-similar traffic. We construct an MMPP with ap-
parently self-similar behavior over several time-scales
by superposing several MMPP s. First, consider two-
state MMPP s with different time-scales. That is, the
mean sojourn time of each process is in accordance with
the different time-scale. Let us superpose them to make
a newMMPP . When we see this process in a large time-
scale, it looks like an ordinary two-state MMPP . If we
look in a smaller time-scale, we find that each state is
composed of a smaller MMPP . This can be repeated
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only finite times.
The resulting MMPP is not self-similar from the

definitions in the previous section since it looks con-
stant when the time-scale is larger than the time con-
stant in itself. However, it can emulate self-similarity
over several time-scales. Thus, it is practically suffi-
cient to use the process which has self-similarity over
only several time-scales to model real traffic.

We assume that the number of states of every un-
derlying MMPP is two. So the MMPP obtained by
the above method is also described by the superposi-
tion of several interrupted Poisson processes (IPP ) and
one Poisson process. We assume that the MMPP un-
der consideration consists of d(> 1) IPP s and a Poisson
process. We also assume that two modulating parame-
ters of each IPP are equal. Then for 1 ≤ i ≤ d, we can
describe ith IPP as follows

Qi =
[

−σi σi

σi −σi

]
, Λi =

[
λi 0
0 0

]
.

Hence the superposition can be described as follows

Q=Q1

⊕
Q2

⊕
· · ·
⊕

Qd,

Λ=Λ1
⊕

Λ2
⊕

· · ·
⊕

Λd

⊕
λp,

where
⊕

means the Kronecker’s sum and λp is the
arrival rate of the Poisson process to be superposed.
The whole arrival rate of the process λ is given by

λ = λp +
d∑

i=1

λi

2
. (5)

Parameters which we have to determine are σi, λi(1 ≤
i ≤ d), and λp.

First, as preliminary we define the notations used
in the procedure and describe some assumptions. Let
Nt|i be the number of arrivals in the ith IPP during the
tth time slot and Nt|p be the number of arrivals in the
Poisson process, and let N (m)

t|i and N
(m)
t|p be respectively

the averaged processes of Nt|i and Nt|p. We assume
that

Var
(
X
(m)
t

)
= Var

(
d∑

i=1

N
(m)
t|i +N

(m)
t|p

)
.

We obtain the variance of the i-th IPP as [10]

Var
(
N
(m)
t|i

)
=

λi

2m

+
{

1
4mσi

− 1
8m2σ2i

(1 − e−2mσi)
}
λ2i .

The corresponding variance of the Poisson process is
λp/m. Because the variance of a process which is a
superposition of independent subprocesses equals the
sum of individual variances, the variance of the whole
process is given by

Var
(
X
(m)
t

)
=

λp

m
+

d∑
i=1

Var
(
N
(m)
t|i

)

=
λ

m
+

1
4

d∑
i=1

ηiλ
2
i , (6)

where

ηi =
1

mσi
− 1

2m2σ2i
(1 − e−2mσi).

Using (4) and (6), we match the variance at d different
points mi (1 ≤ i ≤ d). Suppose the range of time-
scales over which we want the process to express self-
similarity of the original process is mmin ≤ m ≤ mmax,
then mi is defined by

mi = mmina
i−1 (1 ≤ i ≤ d),

where

a =
(
mmax
mmin

) 1
d−1

, d > 1. (7)

From the property of ηi, we have
λ

m
< Var(X(m)

t ) <
λ

m
+ λ2. (8)

We must choose mi such that (8) is satisfied at any mi.
This condition comes from that we use a simple IPP as
a sub-process. Practically, this condition never matters
when m is large, but sometimes Var(X(m)

t ) is too small
when m is small. Therefore, we should be careful to
choose m1, which is large enough to make Var(X(m1)

t )
larger than λ/m1.

Next, we assume the following relation between σi

and mi

miσi = const (1 ≤ i ≤ d).

That is, σi can be described as

σi =
m1
mi

σ1 (1 ≤ i ≤ d). (9)

This assumption comes from the intuitive understand-
ing that a self-similar process looks the same in any
time-scale. By this assumption, we can reduce the num-
ber of the parameters to be determined. That is, if we
determine σ1, we can obtain the values of σi (2 ≤ i ≤ d)
by using (9). Furthermore, we can obtain λp from the
following equation if we determine λi.

λ = λp +
d∑

i=1

λi

2
.

Now the parameters we need to find are only σ1 and
λi.

In the following, we describe the procedure of de-
termining these parameters. We show the parameters
preliminarily required for our fitting procedure in Ta-
ble 1.

Procedure of Parameter Fitting
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Table 1 Preliminarily required parameters.

Parameter Meaning
λ Arrival rate of the whole process

mmin, mmax Minimum and maximum of time-scales
over which self-similarity is taken into con-
sideration

σ2 Variance
H Hurst parameter
d Number of IPP s

Step 0. Find the range of σ1 heuristically and fix σ1.
Step 1. Determine λi as the function of σi. From (4)

and (6), we have

σ2




m−β
1

m−β
2
...

m−β
d


 = λ




m−1
1

m−1
2
...

m−1
d


+ B




λ21
λ22
...
λ2d


 , (10)

where B is the d×d matrix whose (i, j) element is

Bij =
1

4miσj
− 1

8m2iσ
2
j

(1 − e−2miσj ). (11)

Solving this, we determine λi as the function of σi.
Step 2. Determine the value of σ1 from the range

found in Step 0. Here we consider the absolute
value of difference between the log-scales variance
curve of the process given by (6) and that of the
self-similar process given by (4). Note that this
value is the function of m. We take the integral
of the difference over mmin ≤ m ≤ mmax. Since
the integral is the function of σ1, we determine
the value of σ1 so as to minimize that integral by
appropriate search technique.

Step 3. Determine the values of λi from (10).

In step 1, it is necessary that B is non-singular.
It is difficult to prove the non-singularity of B for any
positive integer of d, however, we can show that if a in
(7) is sufficiently large, B is non-singular for any σ1.
We have discussed the non-singularity of the matrix B
in [10].

When we minimize the integral in step 2, we must
be careful to keep the values of λi and λp larger than
zero. We consider the minimum at the log-scale because
we can treat smaller time-scales more carefully.

4. MAP/G/1/K

In this section, we briefly summarize the analytical re-
sults of MAP/G/1/K, a single server queue with finite
capacity and Markovian arrival process [11]. Note that
MMPP/D/1/K is the special case of MAP/G/1/K.

In MAP/G/1/K, the customer arrives at the sys-
tem according to the MAP represented by (C,D),
where C and D are M × M matrices. The service
time S is generally and identically distributed with the

distribution function S(x).
The irreducible matrix C + D is the infinitesimal

generator of the underlying Markov process restricted
to the states {1, · · · ,M}. Let π denote the stationary
vector of C + D, i.e.

π(C + D) = 0, πe = 1, (12)

where e denotes the column vector of ones.
Let Ak (k ≥ 0) denote an M × M matrix whose

(i, j)th element represents the conditional probability
that k customers arrive at the system during a service
time of a customer and the underlying Markov chain
is in phase j at the end of the service given that the
underlying Markov chain is in phase i at the beginning
of the service. Then Ak satisfies the following equation

∞∑
k=0

Akz
k =

∫ ∞

0

e(C+zD)xdS(x).

We also define Bk (k ≥ 1) as

Bk =
∞∑

n=k

Ak.

Let xk (0 ≤ k ≤ K − 1) denote a 1 × M vector
whose ith element represents the stationary joint prob-
ability that the number of customers in the system at
departures is k and the phase of the arrival process is
i. Then the transition probability matrix P is given by

P =




EA0 EA1 · · · EAK−2 EBK−1
A0 A1 · · · AK−2 BK−1
O A0 · · · AK−3 BK−2
O O · · · AK−4 BK−3
...

...
. . .

...
...

O O · · · A1 B2

O O · · · A0 B1



,

where E = (−C)−1D. xk satisfies the following equa-
tions

xk = x0EAk +
k+1∑
n=1

xnAk+1−n,

0 ≤ k ≤ K − 2,

xK−1 = x0EBK−1 +
K−1∑
n=1

xnBK−n.

We can calculate xk’s in the iterative manner [11].
Let yk (0 ≤ k ≤ K) denote a 1 ×M vector whose

ith element is the stationary joint probability that the
number of customers in the system is k and the phase of
the arrival process is i at an arbitrary time. We define
the vector probability generating function y(z) as

y(z) =
K∑

k=0

ykz
k.
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In general, the following relation between the probabil-
ity generating function for arbitrary points and that for
departure points is hold under any service disciplines
[12]

y(z)(C + zD) = λ(z − 1)x(z), (13)

where λ is the mean arrival rate of the MAP and given
by λ = πDe. Suppose that all arriving customers
can accommodate the system and that the customer
who finds the system full immediately leave the sys-
tem. Then x(z) in (13) is given by

x(z) =
1 − y0e

ρ

K−1∑
k=0

xkz
k

+
ρ− (1− y0e)

ρ

yKD

yKDe
zK , (14)

where ρ = λE[S]. Comparing the coefficients of z0 in
(14), we obtain

y0 = λ
1 − y0e

ρ
x0(−C)−1.

Multiplying both sides of the above equation by e yields

y0e =
x0(−C)−1

E[S] + x0(−C)−1
.

Similarly, comparing the coefficients of zk (k =
1, · · · ,K − 1) in (14) yields

ykC + yk−1D = (1 − y0e)(xk−1 − xk)/E[S].

From this, yk (k = 1, · · · ,K − 1) can be calculated by

yk = yk−1D(−C)−1

+(1− y0e)(xk−1 − xk)(−C)−1/E[S].

Finally, we obtain yK fromyK = π−
∑K−1

k=0 yk. Hence
the blocking probability Pb is given by

Pb = yKe. (15)

The loss probability Pl is defined as the ratio of lost
customers to the arriving customers. Then Pl satisfies
the following relationship between the server utilization
and the offered load

1 − y0e = ρ(1− Pl).

Therefore Pl is given by

Pl = 1 − (1− y0e)
ρ

. (16)

5. Numerical Results

In this section, we show some numerical examples of
the loss probability for MMPP/D/1/K under several
conditions. We calculate Pl according to the way of

Table 2 Parameters.

Parameter Value
λ 1.0
σ2 0.6

mmin 102

mmax 104, 105, 106, 107

H 0.6, 0.7, 0.8, 0.9
d 4

Fig. 1 Loss probability. (H = 0.8, K = 100)

Sect. 4 and [11]. Here we set the followings:

C = Q −Λ, D = Λ,

where Q is the infinitesimal generator of MMPP and Λ
is the arrival rate matrix. Q and Λ are calculated by
our fitting method described in Sect. 3. Table 2 shows
the values of preliminary parameters used in Figs. 2 to
11. We calculate Pl varying the mean service time, i.e.,
traffic intensity (offered load) ρ. We also investigate
the behavior of Pl in terms of system size K. In all
figures, TS denotes the time-scale, K the system size,
and ρ the traffic intensity.

5.1 Loss Behavior of MMPP/D/1/K

It is known that there exists a CTS in which the corre-
lation structure in the input process has an impact on
the loss probability. We first investigate the time-scale
impact on the loss probability. Figure 1 shows the loss
probabilities with H = 0.8 and K = 100 in cases of
TS = 102 to 107. The horizontal axis means the traffic
intensity and the vertical axis represents the loss prob-
ability. The loss probabilities are calculated with the
same parameter values as Table 2 except mmin = 3 and
d = 2. From Fig. 1, we observe that the loss proba-
bility becomes small as the time-scale increases. This
implies that the CTS of resulting MMPP/D/1/K is
quite small and hence we can expect the less variation
of loss probability with time-scales large enough. In the
following, we investigate the loss probability under the
long time-scale for details.
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Fig. 2 Loss probability. (K = 30, TS = 105)

Fig. 3 Loss probability. (H = 0.6, K = 50)

Fig. 4 Loss probability. (ρ = 1.0, K = 100)

Figure 2 represents the loss probability with TS =
105 and K = 30. The loss probability is calculated with
varying H and ρ. We observe that the loss probabil-
ity becomes large as H and ρ are getting large. This
tendency agrees with our intuition.

Figure 3 shows the loss probability with K = 50
and H = 0.6. The loss probability is calculated with
varying TS and ρ. From Fig. 3, we observe that the loss
probability becomes large as ρ becomes large. However
there is little difference of loss probabilities in terms of
the time-scale.

Figure 4 illustrates the loss probability with ρ =
1.0 and K = 100. The loss probability is calculated

Fig. 5 Loss probability. (ρ = 1.0, H = 0.8)

with varying TS and H. From the figure, we observe
that the loss probability increases gradually when H
becomes large. We also observe that the system size
affects the loss probability. However, there are no great
differences when the time-scale changes.

Figure 5 represents the loss probability with ρ =
1.0 and H = 0.8, we observe that the loss probability
decreases gradually when K becomes large. However it
does not change greatly by the time-scale.

From Figs. 3 to 5, we observe that the time-scale
does not have strong impact on the loss probabil-
ity. This implies that the time-scale greater than or
equal to 104 is long enough for capturing the station-
ary loss behavior of queueing system with pseudo self-
similar input. Therefore, in the next subsection, we
compare the loss probability obtained from resulting
MMPP/D/1/K with simulation and investigate the ac-
curacy of MMPP/D/1/K.

5.2 Comparison of MMPP/D/1/K with Simulation

For our simulation, simulated self-similar traffic trace is
needed. We generate fractional Brownian traffic (FBT)
based on the FBM with the random midpoint displace-
ment (RMD) algorithm [5] and use it as self-similar
traffic. The readers are referred to [5] for details. Using
RMD algorithm, we generated sample sequences with
nominal H = 0.7, 08 and 0.9, respectively, keeping
λ = 1.0 and σ2 = 0.6 as in Table 2.

Figures 6 to 11 show the comparison of analyt-
ical results with simulation. In all figures, horizon-
tal axis means the traffic intensity and the vertical
axis represents the loss probability. We plot results of
MMPP/D/1/K under TS = 104, 5, 6, and 7 with lines
and simulation results with cross points. Figures 6,
8 and 10 are for K = 10 while Figs. 7, 9 and 11 for
K = 100.

When K = 10 (Figs. 6, 8 and 10), analytical re-
sults give upper bounds of simulation and the discrep-
ancy between analytical and simulation results becomes
small as the traffic intensity increases. In particular,
analytical results exhibit the good agreement with sim-
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Fig. 6 Loss probability. (H = 0.7, K = 10)

Fig. 7 Loss probability. (H = 0.7, K = 100)

Fig. 8 Loss probability. (H = 0.8, K = 10)

ulation when the traffic intensity becomes greater than
1.0.

From Figs. 7 and 9, we observe that the agreement
of analytical results with simulation in the case of K =
100 becomes better than that under K = 10. Note
that the variance fitting method fails to predict the tail
distribution of queue length of MMPP/D/1 even when
the Hurst parameter is moderate [10]. In a practical
sense, the finite queueing system is more desirable than
the system with infinite buffer and hence this result is

Fig. 9 Loss probability. (H = 0.8, K = 100)

Fig. 10 Loss probability. (H = 0.9, K = 10)

Fig. 11 Loss probability. (H = 0.9, K = 100)

quite attractive for the buffer design.
Unfortunately, from Fig. 11, the discrepancy be-

tween analytical results and simulation does not im-
prove so much. This is mainly due to the large Hurst
parameter. However, analytical results succeed in giv-
ing upper bounds which seems to be relatively tight.
Therefore the approach of pseudo self-similar input
seems to be still useful even when the Hurst param-
eter is quite large.
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6. Conclusion

In this paper, we investigated the loss probability of
MMPP/D/1/K where MMPP is generated so as to
mimic the variance-time curve of the self-similar pro-
cess over several time-scales. From the numerical exam-
ples, we observed that the loss probability is sensitive
to the offered load, system size and Hurst parameter
while not sensitive to the time-scale.

Our numerical results represent a significant mean-
ing when we consider modeling and analysis of the
queueing system with self-similar input. As we stated
in Introduction, it is known that the fitting methods
based on the second-order statistics of counts for the ar-
rival process are not sufficient for predicting the queue-
ing performance correctly. However, this is the case of
queueing system with infinite buffer and not the case
of that with finite buffer.

Our numerical results reveal that the time-scale
does not have a strong impact on the loss probability
of resulting MMPP/D/1/K if we consider the time-
scale long enough. In addition, from the comparison of
analytical results with simulation, the queueing system
with finite buffer and pseudo self-similar input gives the
good approximation for the loss probability even when
the Hurst parameter is large. Therefore, in a practical
sense, the variance fitting method seems to be enough
to predict the loss behavior of the finite queuing system
with self-similar input if we consider the appropriate
time-scale.
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