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Abstract

With the extensive spread of the Internet and mobile terminals, the Internet access
from a mobile terminal becomes more important than ever before. In the Internet,
Transmission Control Protocol (TCP) is used as a standard data transport pro-
tocol, however, it is well known that TCP performance degrades in wired-wireless
network environments. This is because TCP is designed originally for wired network
environment. In this paper, we propose a simple TCP algorithm for wired-wireless
network environment focusing on small-sized file documents transmission. In the
proposed algorithm, available bandwidth of network is well estimated with time
intervals between consecutive ACKs. With the estimates, the congestion control in
the proposed method adapts to the state of wireless link and prevents throughput
degradation. A simple filter is used for available bandwidth estimation and dy-
namic adjusting of filter parameter according to the state of wireless link improves
the throughput of small-sized file transmission. We compare the proposed algorithm
with existing TCP Reno and TCP Westwood by simulation and show that the pro-
posed algorithm achieves better performance than existing two TCP algorithms in
wired-wireless network environment.
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1 Introduction

The Internet is indispensable in today’s social life and Internet accessibility be-
comes more important than ever before. In addition, the demand of ubiquitous
networking increasing day by day. In the near future, ubiquitous networking
is environment will be realized based on currently existing technologies for the
Internet, and it is natural that network access from mobile terminals becomes
important for the realization of ubiquitous networking. Existing applications
such as E-mail, Web browsing, Web directory service and multimedia data
distribution, and future new applications will be used in a network, and it will
be necessary to transmit and to receive data using a reliable data transport
protocol. The protocol used in the existing Internet for reliable data transport
is a Transmission Control Protocol (TCP) [32], and it is considered that TCP
becomes one of the dominant protocols in the future ubiquitous networking
as well. Currently, TCP being used dominantly is TCP Reno [36].

TCP Reno algorithm assumes that packet loss occurs at router buffer mainly
due to network congestion, and when packet loss occurs, Reno reduces trans-
mission rate for network congestion avoidance [2, 18, 37]. When the algorithm
was proposed at the end of 1980s, only the use in wired network environment
was taken into consideration and network access from mobile terminal was
not expected at all. If a mobile terminal such as mobile cellular phone, lap-
top PC and PDA accesses the Internet, the mobile terminal uses wireless link
to access to the network. One of the different characteristics of wireless link
from wired one is fading due to the degradation of radio channel. Because of
fading, the bit error rate of wireless link changes rapidly in wide range. An-
other characteristic of wireless link is cellular handoff by the movement of the
mobile terminal. When handoff occurs, the mobile terminal changes wireless
base station and this results in the re-establishment of TCP connections and
packet loss may occur successively. Because the network available bandwidth
changes rapidly and bit error rate of wireless link varies widely, existing TCP
degrades throughput performance in wired-wireless network. The reason is as
follows.

In wireless link, packet loss occurs due to not only network congestion but also
wireless fading and cellular handoff. In the case of packet loss due to wireless
fading or cellular handoff, TCP does not need perform congestion control.
However, TCP cannot recognize which causes packet loss, network congestion
or degradation of wireless link due to fading or cellular handoff. TCP sender
is in the edge of the Internet and TCP performs congestion control even when
the packet loss causes the degradation of wireless link. Note that wireless link
is likely to recover from the degradation and this implies the rapid increase
of the network available bandwidth. If this rapid recovery of wireless link
occurs during congestion avoidance phase, the transmission rate of TCP is
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not adapted to the network available bandwidth immediately and this also
results in the degradation of TCP throughput.

In the near future, the next generation Internet protocol IPv6 becomes stan-
dard and every mobile terminal will be assigned IP address. In order to access
to the Internet from mobile terminal seamlessly, data transmission perfor-
mances such as loss and delay in wireless network must be the same as those in
wired network. A number of studies have been done to improve TCP through-
put performance in wired-wireless network environment [5-11, 13-15, 19, 26,
29, 33-35, 39, 41]. The approaches to improve TCP performance in wireless
network can be classified into the following: (1) link-layer protocols [4, 13, 20,
23-25], (2) split-connection protocols [5, 6, 11, 16, 17, 41], (3) snoop protocols
[7, 9, 33] and (4) end-to-end protocols [10, 15, 19, 26, 27, 34, 35, 39, 40]. We
summarize these studies in the next section.

Although most of those works have succeeded in the enhancement of TCP
performance, there still exist several issues such as the deployment and the
scalability for the actual Internet. As for the deployment issue, the end-to-
end protocol has advantage than other protocols. From this reason, one of
the realistic approaches for improving performance is to modify existing TCP.
In this paper, we consider the modification of existing TCP for improving
throughput performance in wired-wireless network.

In most of related works, throughput performance has been evaluated for the
transmission of infinitely large-sized file. However, the transmission of small-
sized file such as Web document is more realistic for wired-wireless network
environment than the large-sized file transmission. Therefore, our primary
concern is how to achieve high throughput performance for the small-sized file
transmission.

In this paper, we propose a TCP algorithm for wired-wireless network espe-
cially suitable for small-sized file transmission. In the proposed algorithm, a
simple filter is used for available bandwidth estimation and dynamic adjust-
ment of filter parameter according to the state of wireless link improves the
throughput of small-sized file transmission. We investigate the performance
of the proposed algorithm by simulation and show how effective the proposed
algorithm is for the small-sized file transmission.

The paper is organized as follows. Section 2 summarizes the previous works
related to the performance improvement of TCP for wired-wireless networks.
Section 3 represents the design of our proposed TCP algorithm in detail. The
performance evaluation by simulation is presented in Section 4 and Section 5
concludes the paper.
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2 Related Work

In this section, we summarize the previous works related to the improvement
of TCP throughput for wired-wireless networks. As we stated in Section 1,
the approaches to improve TCP performance can be classified into (1) link-
layer protocols, (2) split-connection protocols, (3) snoop protocols, and (4)
end-to-end protocols.

In the link-layer protocol, a wireless link is considered as a reliable link us-
ing link-layer techniques such as automatic repeat request (ARQ) [23] and
forward error correction (FEC) [24, 25]. The link-layer protocols for CDMA
[20] primarily use ARQ technique. AIRMAIL protocol [4] adopts a combi-
nation of ARQ and FEC techniques for loss recovery. These protocols have
advantage that those fit naturally into the layered protocol stack of the In-
ternet. The link-layer protocol like ARQ or FEC operates independently of
transport layer protocol like TCP. These protocols can improve TCP perfor-
mance in wired-wireless network better than other protocols. However, these
need special support of network infrastructure such as router. It is difficult for
link-layer protocol to be deployed widely due to the expensive cost for special
support of infrastructure.

The split-connection protocol splits TCP connection into wireless and wired
parts at base station, and hides wireless loss from wired part connection.
In MTCP [41], a specialized protocol in wireless link called selective repeat
protocol (SRP) or UDP is used over wireless link. However, [41] reported that
MTCP obtains no significant advantage in using SRP in comparison with
TCP. In [11], M-TCP is used for wireless link.

Indirect-TCP (I-TCP) [6] uses standard TCP over wireless link. However, like
other split-connection protocol, using TCP over wireless link results in per-
formance degradation because original TCP sender often experiences timeout
and data transmission stalls frequently. In addition, base station maintains
two TCP connections; one is wireless part connection and the other is wired
one. So the overhead of base station is twice in comparison with non-split-
connection protocol and the base station needs much resources such as buffer
capacity and CPU power. Furthermore, split-connection protocol violates the
end-to-end semantics of TCP. In addition, since base station maintains two
sets of TCP status information for one end-to-end TCP connection, handoff
procedures become complicated and take long time. As a result, the split-
connection protocols can hardly improve TCP performance in wired-wireless
network.

The snoop protocol uses Snoop agent at base station. The agent monitors
packets of each TCP connection and buffers unACKed packets. The agent
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retransmits packets instead of TCP sender if the agent detects packet loss by
receiving triple duplicate ACKs or by local timeout. TCP sender is hidden
from packet loss in wireless link by retransmission of snoop agent. WTCP [33]
is using SACK and does not use local retransmission timer for loss recovery.
WTCP can recovery from loss more effective than Snoop by using SACK. The
one of advantages for using this type of protocol is that it suppresses duplicate
ACKs and that it locally retransmits the buffered packet, and thereby it suc-
ceeds in avoiding unnecessary congestion control at TCP sender. Snoop agent
needs to maintain per-connection TCP status like split connection protocol,
but the overhead is smaller than split connection protocol. Snoop protocol has
the same complexity of handoff procedure as split connection protocol.

The end-to-end protocol improves TCP performance keeping end-to-end se-
mantics. The importance of keeping the end-to-end semantics [12] can never
be overemphasized. In fact, keeping this semantics guarantees the transmis-
sion of data over any kind of heterogeneous network. Furthermore, if we use
IPsec of IPv6, keeping end-to-end principle is very important because inter-
mediate router cannot monitor TCP packet header. TCP SACK option [19,
27] enhances information of packet loss. If packet loss occurs, original TCP
retransmits all packets which has higher sequence number than that of lost
packet. TCP SACK option gives detailed information of received and unre-
ceived packets to the sender host. The sender host with TCP SACK option
retransmits lost packet more effective than original TCP. So TCP performance
can be improved by using SACK in environment where random loss occurs.
TCP SACK option is proposed by RFC 1072 [19], however, the operation of
sender side TCP when SACK packet is received is not defined in detail.

Freeze-TCP [15] uses one of standard TCP mechanisms, zero window adver-
tisement (ZWA). When cellular handoff occurs, the mobile terminal sends
ZWA to TCP sender to advertise the occurrence of cellular handoff. If the
sender receives ZWA, the sender aborts transmission and keeps cwnd and
ssthresh not changed. After handoff process is completed, the sender resumes
transmission with the same sending rate as that before handoff. Freeze-TCP
can improve TCP throughput performance if cellular handoff occurs. However,
it does not consider the degradation of wireless link and TCP performance de-
grades when random packet loss occurs over wireless link.

TCP Westwood [26] performs available bandwidth estimation for the update
of cwnd and ssthresh when fast retransmission or timeout occurs. By using
available bandwidth estimation for setting cwnd and ssthresh, the sender
does not reduce transmission rate needlessly and the throughput performance
and link utilization is greatly improved. TCP Westwood achieves higher per-
formance than TCP Reno in wired and wireless network environments. How-
ever, available bandwidth estimation algorithm is complex and the algorithm
for available bandwidth estimation cannot follow the rapid change of network
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condition. Furthermore, TCP Westwood does not take the transmission of
small-sized file such as Web document into consideration.

3 Proposed Algorithm

In this section, we describe our proposed algorithm in detail. The algorithm
consists of two parts; one is the estimation of available bandwidth and the
other is the update of slow start threshold and congestion window size using
the bandwidth estimate.

3.1 Available Bandwidth Estimation

The proposed algorithm estimates network available bandwidth as follows.
Let tk denote the time at which original sender host receives kth ACK and
dk the amount of kth data segment sent to destination host. Whenever ACK
reaches the sender host, the sender host calculates sample available bandwidth
estimation BWSample(k) using the following.

BWSample(k) =
dk

tk − tk−1

. (1)

Because ACK interval tk−tk−1 fluctuates under TCP window flow control, the
value of BWSample(k) also fluctuates and is inaccurate estimate for available
bandwidth. Therefore, the proposed algorithm smoothes BWEstimated(k) using
smoothing filter like other TCP variants including TCP Westwood. The filter
implemented in TCP Westwood is well designed and provides more accurate
estimates than other TCP variants proposed before. However, the filter of
TCP Westwood is complicated and its computation time is not negligible, that
is, computation overhead is larger than other TCP variants. Furthermore, it
cannot capture the rapid change of available bandwidth well as stated in the
previous section.

We focus on the well-known simple smoothing filter, exponential weighted
moving average (EWMA). The EWMA filter is expressed with α (0 ≤ α ≤ 1)
as

BWEstimated(k) = BWEstimated(k − 1)× α

+ BWSample(k)× (1− α). (2)

6



The idea based on the EWMA filter is that the more recent samples better re-
flect the current status in the network. Note that large α provides the estimate
greatly affected by the past estimation results. Conversely, small α provides
the estimate largely reflected by the current network status. However, [21] has
reported that the EWMA filter based on autoregressive and moving average
(ARMA) models may not work well because a sample sequence of delays such
as RTT is a mixture of nonstationary and long-range dependent processes.
Actually, it is difficult to obtain accurate estimates at the rapid change of net-
work condition if the filter uses fixed α. For example, if the filter uses small α,
the estimated value captures instantaneous rapid change well and hence small
α is appropriate for the network whose condition changes instantaneously and
rapidly as seen in wireless handoff. On the other hand, if α is set large, the es-
timate is less updated and this is preferable for the case in which the network
condition doesn’t change so much. In actual use of TCP over wired-wireless
network, small-sized file transmission such as Web documents is a typical ap-
plication. When a small-sized file transmission starts, TCP needs accurate
available bandwidth estimate as soon as possible. This is the same situation
as cellular handoff.

In order to obtain the high performance for the small-sized file transmission
over wired-wireless network, we dynamically adapt α in (2) to the current net-
work state. By dynamically updating α, BWEstimated is quickly adapted when
TCP session starts or network condition changes rapidly, and BWEstimated is
updated moderately when the network condition is stable.

When kth ACK is received, we first update α with BWEstimated(k − 1) and
BWSample(k) in the following manner:

if (BWSample(k)≥BWEstimated(k − 1))

α =
BWEstimated(k − 1)

BWSample(k)
(3)

elsif (BWSample(k) < BWEstimated(k − 1))

α =
BWSample(k)

BWEstimated(k − 1)
. (4)

Finally, updated α is substituted into (2) and kth estimate of available band-
width BWEstimated(k) is calculated. Then BWEstimated(k) is used for setting
slow start threshold (ssthresh) and congestion window (cwnd) in TCP con-
gestion control algorithm.
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3.2 Congestion Control Algorithm

The TCP Reno also updates ssthresh and cwnd and controls transmission
rate when either timeout or retransmission by fast retransmit algorithm oc-
curs. It is well known that Reno is likely to reduce transmission rate smaller
than network available bandwidth and this causes throughput degradation. In
order to avoid the throughput degradation, the proposed algorithm updates
ssthresh and cwnd using available bandwidth estimate value BWEstimated.

The algorithm for updating ssthresh and cwnd is as follows.

Slow start threshold:

ssthresh=
BWEstimated × RTTmin

Packet Size
, (5)

where RTTmin is the minimum of round trip time (RTT).

Congestion window:
the fast retransmission case;

if (cwnd ≥ ssthresh)

cwnd = ssthresh (6)

elsif (cwnd < ssthresh)

cwnd⇒ keep previous value (7)

the timeout case;

cwnd= 1. (8)

When retransmission by fast retransmit algorithm occurs, the proposed algo-
rithm updates ssthresh with (5) and cwnd with (6) or (7). This is because
the fast retransmission results from light congestion and it need not decrease
the transmission rate so much.

When timeout occurs, the proposed algorithm updates ssthresh and cwnd by
(5) and (8), respectively. This is because timeout indicates heavy congestion
and the transmission rate needs to decrease.

4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm by sim-
ulation using network simulator ns2 [31]. We compare the proposed algorithm
with the existing two TCPs: TCP Reno and TCP Westwood. To simulate
TCP Westwood, we use TCP Westwood module for ns2 [38].
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Fig. 1. Network topology for wired-wireless network simulation.
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Fig. 2. Effectiveness of bandwidth estimation (packet loss rate: 0.001%).

In the following, we assume that TCP uses delayed ACK mechanism with
200ms delay. TCP packet size is 1400 bytes while UDP packet size is 1000
bytes and the router buffer size is 100 packets. The initial window size is 100
segments and maximum window size is set to 2000 segments.

4.1 Effectiveness of Bandwidth Estimation

In this section, we investigate the effectiveness of the proposed bandwidth
estimation algorithm. Simulation network topology is shown in Fig. 1. The
bandwidth of wireless link is 10 Mbps and available bandwidth is also 10
Mbps. A single TCP connection is established and the packet loss rate of
wireless link is 0.001% and 10%. We plot the data at 50 ms intervals because
50 ms is roughly equal to the mean RTT.

Fig. 2 shows the bandwidth estimates of TCP Westwood and the proposed
algorithm when the rate of packet loss is equal to 0.001%. From Fig. 2, we ob-
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(a) Estimated bandwidth.
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(b) Slow start threshold.

Fig. 3. Effectiveness of bandwidth estimation (packet loss rate: 10%).

serve that our proposed algorithm is more effective for available bandwidth es-
timation than TCP Westwood. Both estimates drop suddenly just after packet
loss occurs. Then, the estimate of TCP Westwood increases gradually while
that of the proposed algorithm recovers quickly. This results from the effect of
dynamical update of smoothing filter parameter α. This is a quite attractive
feature of the proposed algorithm because high transmission rate is achieved
just after TCP session starts. Furthermore, in small-sized file transmission,
TCP session is short lived and our proposed algorithm is also effective for
such short lived session.

Fig. 3 illustrates bandwidth estimates and slow start threshold with packet loss
rate of wireless link equal to 10%. Fig. 3(a) shows the bandwidth estimates and
we observe that the bandwidth estimate of TCP Westwood is far lower than 10
Mbps, actual available bandwidth. On the other hand, the bandwidth estimate
of our proposed algorithm oscillates with high frequency after each detection
of packet loss. This is a weak point of our algorithm, however, the resulting
estimate is close to the actual available bandwidth. In addition, because of
updating cwnd and ssthresh is less frequently than the update of bandwidth
estimate, both cwnd and ssthresh hardly oscillate as shown in Fig. 3(b).
Therefore, the available bandwidth estimation of our proposed algorithm is
more effective than that of TCP Westwood.

4.2 Fairness Issue

The fairness of bandwidth sharing means that all connections have the same
opportunity to transmit data. In this subsection, we investigate how fair-share
is achieved in the proposed algorithm, TCP Reno and TCP Westwood. The
simulation topology is shown in Fig. 4. There are two TCP sources in the
network; one is connected to router with 100 Mbps wired link whose propaga-
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Fig. 4. Network topology for fairness simulation.
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Fig. 5. Sequence number vs. time for long and short RTT connections.

tion delay is 10 msec and the other is connected to the router with the same
wired link except 20 msec propagation delay. A TCP connection is established
between each source and destination hosts for FTP session and each source
sends infinitely large-sized file by FTP for 300 s. Fig. 5 illustrates how the se-
quence number increases against time for each TCP protocol. It is well known
that the bandwidth used for TCP session with short RTT is likely to become
large while that with long RTT tends to be small. We observe this tendency in
Fig. 5. However, the discrepancy in TCP Reno is the largest while that in the
proposed algorithm is the smallest. This implies that the proposed algorithm
provides better fair-share than TCP Reno and TCP Westwood even when
sessions with different RTT are multiplexed. The reason is that the available
bandwidth estimate is close to actual available bandwidth and this prevents
long RTT connection from needless reduction of cwnd and ssthresh.

11



Fig. 6. Network topology for friendliness simulation.
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Fig. 7. Sequence number vs. time for TCP Reno and proposal.

4.3 Friendliness Issue

Currently, it is important for modified TCP variant to achieve good friendli-
ness with TCP Reno in its standardization. Here, the friendliness means fair
bandwidth sharing among different data transmission protocols. We evaluate
the friendliness between the proposed algorithm and TCP Reno by simulation.
The network topology is shown in Fig. 6. In Fig. 6, the senders of TCP Reno
and the proposed algorithm are connected to router with 100 Mbps wired link
whose propagation delay is 10 ms. The link between router and destination
is 10 Mbps wired link with 10 ms propagation delay. Each TCP connection
is established between each source and destination hosts for FTP session and
each source sends infinitely large-sized file for 300 s.

From Fig. 7, both the sequence numbers are growing in a similar manner.
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Fig. 8. Network topology for wired network simulation.

This implies that the proposed algorithm achieves fair-share of bottleneck
bandwidth with TCP Reno and this is the advantage for standardization.

4.4 Bulk Data Transmission

In this scenario, source host sends infinitely large-sized file by FTP for 1000
s. This is the case of FTP session where CD-ROM image or multimedia data
file is transmitted. We evaluate the proposed algorithm both in wired network
environment and in wired-wireless network environment. The performance
measure is the average of TCP throughput during 1000 s time interval.

4.4.1 Impact of bottleneck bandwidth on TCP throughput over wired network

For wired network simulation experiments, we consider a network model shown
in Fig. 8. In Fig. 8, both links for TCP and UDP sources connected to router
are wired ones with 100Mbps bandwidth and 10ms propagation delay. The
link between router and destination host is also wired link whose bandwidth
and propagation delay are variable. UDP traffic is sent from the UDP sender
to the destination host as background traffic. UDP traffic is constant bit rate
(CBR) traffic and the bit rate changes in the range from 0 Mbps to bottleneck
bandwidth, and the interval between time epochs at which the bit rate changes
is exponentially distributed. The mean length of the interval is set to 1 s or
10 s.

In Fig. 9, the horizontal axis means bottleneck bandwidth and the vertical
axis represents resulting throughput. We observe that the proposed algorithm
achieves higher throughput performance than TCP Reno for any bottleneck
bandwidth. However, the throughput of proposed algorithm is smaller than
that of TCP Westwood. The main reason of this performance degradation is
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Fig. 9. Throughput vs. bottleneck bandwidth (bulk data transmission in wired net-
work model), bottleneck link delay: 100 ms, mean burst time: 10 s.
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Fig. 12. Markov burst error model.

dynamical update of the filter parameter α. Fig. 10, illustrates how ACKs are
received by the TCP sender host. In Fig. 10, the time interval of consecutive
ACK arrivals is roughly classified into two patterns which result from window
flow control mechanism; one is the interval reflected by bottleneck bandwidth
(tbw), and the other is the interval reflected by RTT (trtt). Note that trtt some-
times becomes much larger than tbw. If some ACK interval becomes quite
large, the sample available bandwidth BWSample becomes small. In our algo-
rithm, the rapid change of BWSample greatly affects the bandwidth estimate
BWEstimated. As a result, the longer RTT becomes, the smaller bandwidth es-
timate is obtained and the throughput performance of the proposed algorithm
is worse than TCP Westwood in long RTT environment. This problem can be
solved by using more sophisticated filter and this is our future work.

Fig. 11 illustrates how the throughput changes against bottleneck link delay.
The throughput of the proposed algorithm is less than TCP Westwood as the
wireless link delay becomes large. This is because large bottleneck link delay
causes the long RTT.

4.4.2 Impact of packet loss rate on TCP throughput over wired-wireless net-
work

In order to investigate throughput performance in wired-wireless network, we
use the network model as shown in Fig. 1. The link between sender host and
base station is wired link with 100Mbps bandwidth and 10ms propagation
delay, and the link between base station and destination host is wireless link
where bandwidth and propagation delay are variable. In this scenario, as for
wireless communication error model, we consider a Markov burst error model
in which the state of wireless link consists of good and bad [1, 26] (Fig. 12). In
each state, packet loss occurs independently with loss probability depending on
the state. The time interval between errors is thus exponentially distributed.
The time spent in each state is also exponentially distributed. The mean du-
rations of good and bad states are 1 s and 10 s, respectively. In good state,
loss rate of wireless link is 0.001% while in bad state, loss rate is set to the
value in the range from 1% to 30%.
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In Fig. 13, each graph plots the throughput against packet loss rate in bad
state. In Fig. 13, figures from 13(a) to 13(e) represent cases of bottleneck
bandwidth equal to 1, 10, 20, 50 and 100 Mbps, respectively. From Fig. 13, we
observe that our proposed algorithm achieves higher performance than TCP
Reno and TCP Westwood in any case. In Figs. 13(a), 13(b) and 13(c), our
proposed algorithm achieves similar performance to that of TCP Westwood.
Note that in these results, the bandwidth delay products are not so large.
If bandwidth delay products is small, cwnd is also small. In this condition,
even though the actual available bandwidth changes rapidly, the change of
cwnd is small and the difference between cwnd by accurate estimation and
cwnd by inaccurate estimation is also small. So our proposed algorithm with
rapid adjustment of bandwidth estimate to actual bandwidth is not effective.
However, in Figs. 13(d) and 13(e), proposed algorithm achieves higher perfor-
mance than that of TCP Westwood because the bottleneck bandwidth, and
hence bandwidth delay products is large enough.

4.5 Small Sized-File Transmission

We have investigated the TCP performance for bulk data transmission where
TCP session is long lived. In the small-sized document transmission like a Web
document, however, TCP session is short lived. It is expected that the algo-
rithm which achieves good throughput performance in bulk data transmission
may degrade the performance with small-sized file transmission. In this sub-
section, we evaluate our proposed algorithm in small-sized file transmission.
We assume that the source host sends some small-sized files by FTP. The file
size is exponentially distributed with mean varying from 1KB to 1000KB. The
source host sends 10,000 files in each simulation and the performance measure
is the average of TCP throughput.

4.5.1 Wired environment

In this scenario, we use the network topology shown in Fig. 1 for simulation
model. The background UDP is CBR whose bit rate is half of bottleneck
bandwidth. The bottleneck bandwidth is in the range from 1 Mbps to 100
Mbps.

In Fig. 14, the horizontal axis means bottleneck bandwidth and the vertical
axis represents resulting throughput. As shown in Fig. 14, the throughput per-
formance of the proposed algorithm is similar to those of TCP Reno and TCP
Westwood when bottleneck bandwidth is larger than 50 Mbps. Because that
bottleneck bandwidth is large enough to transmit small-sized files, the packet
loss rarely occurs at router buffer. On the other hand, the bottleneck band-
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(a) Bottleneck bandwidth: 1Mbps

�������

�������

�������

�������

�������

�������

�������

�������

�������

� � �	� �	� 
�� 
�� ���

�� 
��
��
��
���
� ��
�

������������ !�"�"$# ��� �&% ')(

*,+-�/.0��1�!
*2+-�43/��"�� 56!�!�7

��# !�8�!�"��� 

(b) Bottleneck bandwidth: 10Mbps
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(c) Bottleneck bandwidth: 20Mbps
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(d) Bottleneck bandwidth: 50Mbps
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(e) Bottleneck bandwidth: 100Mbps

Fig. 13. Throughput vs. packet loss rate in bad state (bulk data transmission in
burst loss model), wireless link delay: 1 ms, mean burst time: 10 s.

width is in the range from 1 Mbps to 50 Mbps, the throughput performance
of the proposed algorithm is larger than TCP Reno but smaller than TCP
Westwood. This is because the available bandwidth does not change so much.
As we discussed in 4.4.1, the bandwidth estimation of our proposed algorithm
is likely to be under-estimated and this results in the less performance of the
proposed algorithm than TCP Westwood.

Fig. 15 shows the throughput against mean file size. In Fig. 15, when the
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Fig. 14. Throughput vs. bottleneck bandwidth (small-sized file transmission in wired
network model), mean file size: 200 KB, bottleneck link delay: 10 ms.
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Fig. 15. Throughput vs. mean file size (small-sized file transmission in wired network
model), bottleneck bandwidth: 10 Mbps, bottleneck link delay: 10 ms.

mean file size is larger than 200 KB, the proposed algorithm provides the
worst performance among three. This is because most of TCP connections
are long lived in this case. On the other hand, when mean file size is smaller
than 200 KB, the throughput of the proposed algorithm is almost the same
as TCP Reno and TCP Westwood. However, our proposed algorithm is less
throughput performance than TCP Westwood for any mean file size. This is
due to the effect of underestimation of available bandwidth as discussed in
4.4.1.
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4.5.2 Independent loss model

In this scenario, wireless error occurs according to independent (Bernoulli)
loss model [26] and the packet loss rate is in the range from 1% to 30%. The
bottleneck bandwidth is in the range from 1 Mbps to 100 Mbps and the range
of wireless link delay is from 1 ms to 100 ms.

Fig. 16 illustrates the throughput against the mean file size. Figs. 16(a), 16(b)
and 16(c) are cases with wireless link delay equal to 1 ms, 10 ms and 20 ms,
respectively. In Figs. 16(a) and 16(b), we observe that our proposed algorithm
achieves higher performance than existing TCP Reno and TCP Westwood.
This is because new TCP connection is established for each file transmission
and the bandwidth estimate of TCP Westwood does not fails in predicting ac-
tual available bandwidth just after the session starts even though the proposed
algorithm can estimate actual available bandwidth very quickly. If packet loss
occurs just after session start point, TCP Westwood greatly reduces its trans-
mission rate while the proposed algorithm does not perform needless trans-
mission rate reduction. In Fig. 16(c) where wireless link delay is 20 ms, our
proposed algorithm achieves higher performance than TCP Reno but smaller
than that of TCP Westwood. This results from the underestimation of avail-
able bandwidth due to large end-to-end RTT. Fig. 16 shows that the proposed
algorithm is effective in the wireless link with small delay.

Fig. 17 illustrates the throughput against the mean file size. From Fig. 17,
when the bottleneck bandwidth becomes large, the throughput of our pro-
posed algorithm becomes smaller than TCP Westwood. This also results from
underestimation of available bandwidth. The end-to-end RTT does not change
in this case, but when the bottleneck bandwidth increase, ACK intervals tend
to become small. Then the end-to-end RTT becomes much larger than ACK
interval and this causes the underestimation of available bandwidth in our
proposed algorithm. In small bottleneck bandwidth, however, the proposed
algorithm achieves higher performance than TCP Reno and TCP Westwood.
Note that new TCP connection is established for every file in Web document
transmission model. In this situation, the proposed algorithm estimates avail-
able bandwidth estimation accurately just after session start point and this
avoids needless transmission rate degradation when packet loss occurs.

Fig. 18 also illustrates the throughput against the mean file size. In Fig. 18,
we observe that our proposed algorithm achieves higher throughput perfor-
mance than TCP Reno and TCP Westwood for any packet loss rate. This
implies that our proposed algorithm is effective for small-sized file transmis-
sion in wired-wireless network environment. When both RTT and bottleneck
bandwidth are small, the proposed algorithm does not underestimate actual
available bandwidth and this results in higher performance than TCP Reno
and TCP Westwood. In the case that packet loss rate is 10%, the proposed al-
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(a) Wireless link delay: 1ms
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(b) Wireless link delay: 10ms
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(c) Wireless link delay: 20ms

Fig. 16. Throughput vs. mean file size (small-sized file transmission in independent
loss model), bottleneck bandwidth: 10 Mbps, packet loss rate: 10%.

gorithm achieves higher performance than TCP Westwood. When packet loss
occurs, TCP Westwood largely decreases the available bandwidth estimates
and slowly updates the estimate. On the other hand, the proposed algorithm
estimates actual available bandwidth very quickly after packet loss occurs. So
the proposed algorithm is more effective over high packet loss rate link.

From numerical results in this section, it is shown that the proposed algo-
rithm is effective in wired-wireless network and achieves good fairness and
TCP friendliness. In particular, the proposed algorithm achieves very high
performance for small-sized file transmission. The reason why the proposed
algorithm achieves higher performance than existing TCP Reno and TCP
Westwood is that the proposed algorithm estimates actual available band-
width quickly and this prevents from needless degradation of transmission
rate. Further advantage of the proposed algorithm is that the proposed algo-
rithm is for sender side and does not need any modification of receiver-side
TCP. This is great advantage for standardization of the Internet protocol. In
addition, the proposed algorithm has no parameters to be pre-determined and
no parameter tuning is needed.
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(a) Bottleneck bandwidth: 1Mbps
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(b) Bottleneck: 10Mbps
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(c) Bottleneck bandwidth: 100Mbps

Fig. 17. Throughput vs. mean file size (small-sized file transmission in independent
loss model), wireless link delay: 1 ms, packet loss rate: 10%.

5 Conclusion

In this paper, we proposed the algorithm for improving TCP performance
for the transmission of small-sized file such as Web document. For this pur-
pose, our proposed algorithm adapts to the rapid change of network available
bandwidth by dynamical updating the key parameter of bandwidth estimation
filter. We evaluated our proposed algorithm’s performance by simulation. We
observed that the fair-share of bottleneck bandwidth between two different
RTT connections is achieved using our proposed algorithm and that our pro-
posed algorithm also achieved fair-share of bottleneck bandwidth with existing
TCP Reno. These results are the advantage for protocol standardization.

Moreover, we showed that the proposed algorithm can achieve higher through-
put than existing TCP Reno and TCP Westwood even though our proposed
algorithm uses simple bandwidth estimation filter. In particular, our proposed
algorithm is effective for small-sized file transmission which is a typical appli-
cation in the wired-wireless network environment.

As a future research work, the refinement of the available bandwidth estima-
tion filter for preventing from underestimation should be investigated.
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(a) Packet loss rate: 2%
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(b) Packet loss rate: 5%
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(c) Packet loss rate: 10%
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(d) Packet loss rate: 30%

Fig. 18. Throughput vs. mean file size (small-sized file transmission in independent
loss model), wireless link delay: 1 ms, bottleneck bandwidth: 1 Mbps.
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