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Recent measurements of packet/cell streams in multimedia communication networks
have revealed that they have the self-similar property and are of different characteris-
tics from traditional traffic streams. In this paper, we first give some definitions of self-
similarity. Then, we propose a fitting method for the self-similar traffic in terms of Markov-
modulated Poisson process (MMPP). We construct an MMPP as the superposition of two-
state MMPPs and fit it so as to match the variance function over several time-scales.
Numerical examples show that the variance function of the self-similar process can be well
represented by that of resulting MMPPs. We also examine the queueing behavior of the
resulting MMPP/D/1 queueing systems. We compare the analytical results of MMPP/D/1

with the simulation ones of the queueing system with self-similar input.
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1. Introduction

Recently a number of high-quality, high-resolution measurements of multimedia
traffic in high-speed networks such as packet streams in local area networks (LAN), cell
streams from variable bit rate (VBR) video streams in ATM networks, etc., have been
carried out and analyzed. They have shown that the traffic from those networks appears
to be self-similar [4,12]. The self-similar traffic is characterized by that the correlation
never vanishes in a large time-scale. Its traffic looks the same regardless of time-scales

over a long range interval. This fractal behavior makes the traffic very bursty. These
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properties of the self-similar traffic are quite different from those of traditional traffic
models such as Poisson process, Markovian arrival process (MAP), etc.

The above observation has initiated studies of new models such as chaotic maps [5],
fractional Brownian motion (FBM) [14] and fractional autoregressive integrated moving
average (FARIMA) model [4]. They can describe the self-similar behavior in a relatively
simple manner. However, queueing theoretical techniques developed in the past are
hardly applicable for these models.

On the other hand, a number of models based on traditional traffic models have
been proposed. One approach is to emulate self-similarity over a certain range of time-
scales with finite state Markovian models. [1,2] have proposed a model based on Markov-
modulated Poisson process (MMPP) as a superposition of two state Markov processes.
In [16], a discrete-time Markov chain emulating self-similarity which is quite easy to
manipulate and depends on only two parameters has been analyzed. Another approach
is to model self-similarity through superposition of infinite Markovian sources. In [13],
they have constructed a self-similar process from an infinity of on-off sources with Pareto
service demands.

As for the relating works in terms of describing self-similar processes, [18] consid-
ered the fractal point processes (FPPs) and proposed four models based on FPPs. [6]
proposed the approximation method for long-tail distributions using hyperexponential
distributions.

Another significant and practical issue of the self-similarity is the effect of the time-
scaling. [9] discussed the impact of the long-range dependence (LRD) on the buffer
occupancy and indicated that LRD does not affect the buffer occupancy when the busy
periods of the system are not large. In [17], the authors considered the critical time scale
(CTS) and showed that the buffer behavior at the time-scale beyond the CTS is not
significantly affected.

In this paper, we first give some definitions of self-similarity which are equivalent
to those in [3]. In particular, we propose an equivalent definition of asymptotically self-
similar process. Then, using the definition of the strictly self-similar process, we propose
a fitting method for self-similar traffic in terms of MMPP. Our fitting method is based
on the model by Anderson et al. [1,2], where traffic is modeled by the superposition of
several two state MMPPs.

In [1,2], the authors proposed the fitting method which is mainly focused on the
covariance structure of the second-order self-similar process. More precisely, the param-
eters of MMPP are determined so as to match the autocorrelation function which is
approximately evaluated. In our method, however, the parameters are determined so as
to match the variance of the measured traffic which is exactly evaluated.

It is well known that the queueing performance deteriorates with the self-similar

traffic whose Hurst parameter is between 0.5 and 1, i.e., LRD traffic [4]. Hence it is
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important to predict the queueing behavior under the self-similar traffic with LRD. In
general, the fitting methods based on the second-order statistics of counts for the arrival
process are not sufficient for predicting the queueing performance. (See [1,2] and refer-
ences therein for details.) Here, we have two goals for developing the fitting method using
MMPP. First one is that the resulting MMPP will have the same statistical character-
istics as the original self-similar traffic. Second goal is to predict the queueing behavior
under any traffic conditions. That is, the performance measures such as the mean waiting
time and the tail distribution of queue length are the same as those of simulation results
driven by the self-similar traffic. For judging whether our fitting method works well or

not, we consider the following criteria:

1. Statistical Characteristics
If the variance-time curve of the resulting MMPP agrees with that of self-similar
process over specified time-scales, we can say that the fitting method works well in

the sense of statistical characteristics of traffic.

2. Queueing Performance
We consider the mean waiting time and the tail distribution of queue length. If those
of the queueing system with resulting MMPP input agree with the simulation results
under any traffic conditions, we can say that the fitting method works well in the

sense of queueing performance.

The paper is organized as follows. In Section 2, we summarize some important
characteristics of MMPP. In Section 3, we overview the concept of self-similarity and
give some definitions. In section 4, we explain the idea of superposing two-state MMPPs
to model self-similar traffic. In section 5, a fitting procedure of MMPP is given. In section
6, we consider the condition on the preliminarily required parameters for the fitting. In
section 7, a number of numerical results are shown in order to verify the usefulness of

our fitting method. Finally, conclusions and discussions are presented in section 8.

2. Markov-Modulated Poisson Process

In this section, we summarize some main characteristics of MMPP [7,8]. MMPP
is a doubly stochastic Poisson process. In the case of m-state MMPP, its arrival rate is
determined by the state of a continuous-time Markov chain with infinitesimal generator
Q@ and Poisson arrival rates A; (1 < i < m). That is, the arrival rate is A; when the
Markov chain is in state ¢. Matrix A which describes Poisson arrival rates is called the
arrival rate matrix. In the two-state case, () and A are given by

—01 01 )\1 0
@ [ 0 AQ]

b
02 —02
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In the following, we derive the mean and the variance of the number of arrivals in
MMPP. Although we consider the case of two-state MMPP, the results presented below
also apply to the general case. Let N; be the number of arrivals in (0,¢] and J; be the
state of the Markov chain at time ¢. We consider a matrix P(n,t) whose (4, j)-th element

is defined as
Pij(n,t) =Pr{N; =n,J; = j|Ng =0,Jo =i}, 1<ij<2

The matrices P(n,t) satisfy the following forward Chapman-Kolmogorov equations

d

aP(n,t) =Pn,t)(Q—A)+Pn—-1,)A, n>1,t>0,

(1)

where [ is the identity matrix. Multiplying (1) by 2" and summing over n =0, 1, ..., we

obtain

d * _ * *
%P (z,t) = P*(2,t)(Q — A) + zP*(z,1)A, @)
P*(z,0)=1,

where P*(z,t) is the generating function of P(n,t). Solving (2) for P*(z,t), we obtain

P*(2,1) = exp{[Q + (= — DAJt}.
For the time-stationary MMPP, the mean of N, is given by

P*
- OP*(z,t)

0'2)\1 + Ul)\gt
0z

e =mAet =
z=1

B(N,) =

)
g1 +0’2

where e = (1,1) and 7 is the steady state vector of the Markov chain such that
7mQ =0, we=1.

The variance of N is given by (see Appendix A and [8])

Var(Ny) = 20 odey oy, 2
¢ 0'1+0'2 ! 01+02

(1 - e(onton) (3)

where
A — 0102(A1 — Ag)?
= R T 22
(0'1 —|—O’2)3

3. Self-Similarity

In this section, we overview the concept of self-similarity of the stochastic pro-
cess. First, we summarize Cox’s definitions of self-similarity [3] and then, we show the

equivalent definitions to those of Cox.
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3.1. Cox’s Definitions of Self-similarity

We consider a second-order stationary process X = {X; : t = 1,2,...} with the
variance o2 and the autocorrelation function 7(k), where r(k) is given as
Cov(Xy, X,
r(k) = ov(Xy, Xivk)
Var(Xt)

In the context of the packet traffic, X; corresponds to the number of packets that arrive

)

during the ¢-th time slot. We also consider a new sequence of Xt(m which is obtained by

averaging the original sequence in non-overlapping blocks. That is,

m_ 1y
Xt( ):%ZX(t—l)m-‘r’i? t:1,2, .
i=1

The new sequence is also a second-order stationary process with the autocorrelation
function (™ (k).
Let 62 denote the central second difference operator defined by that for any function

f(=),
*(f(x)) = {fle+1) = f(2)} = {f(z) = flz = D}

Then, definitions of self-similar process are given by the following.

Definition 1. X is called exactly second-order self-similar with the Hurst parameter
H=1-p3/2if

r(k) = %52(/@2—5). @)

Definition 2. X is called asymptotically second-order self-similar with the Hurst pa-
rameter H =1 — (/2 if

1
rM™ (k) — 562(k2*ﬁ), as m — 00. (5)
Note that (4) implies that for all m =1,2,.. .,
™ (k) = r(k). (6)

We show this in the next subsection. We are interested in the range 0.5 < H < 1 because
the process has the long-range dependence. In the case that H = 0.5, X is a second-order
pure noise with Var(X (™)) = Var(X)/m.

3.2. Equivalent Definitions of Self-Similarity

In this subsection, we give equivalent definitions to Definition 1 and 2. For the case

of exact second-order self-similarity, what we discuss in the following is shown in [19].
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Theorem 3. [19] X satisfies (4) if and only if for all m =1,2,.. .,

Var(X(™) = ¢2m =", (7)
Proof. See Appendix B. O
Next theorem implies that (4), or equivalently (7) implies (6).

Theorem 4. [19] If X satisfies (4), for all m =1,2,...,
™ (k) = r(k).
Proof. See Appendix B. O

Let L(z) denote the slowly varying function at infinity, i.e. for any n > 0,

- L(nx) _
2T

Then, we have the following theorem about the asymptotically self-similar process.

Theorem 5. X satisfies (5) if and only if for
Var(X (™) ~ L(m)m™%, as m — oo, (8)
where a(x) ~ b(x) means

lim o) =1.

e b(z)

Proof. Let X be the process with autocorrelation function r(k) satisfying (8). We
consider the averaged process X’ = X(™) . In a similar way to derive (28), from (25),

(xmy 2
Var(X ™)) = L h—Zh k)Cov(X,™, X)) (9)
k=1

Dividing (9) by Var(X (™) yields

Var(X (™) Var( X<m 2 & (m) 1 (m)
Var (X0 = hth k)Cov(X,™, X,T)).

Letting m — oo, we have

Var(X (hm) 2 Lf 0 =
li - 1 - “ (m) - -
mso Var(X(m)  messo h + " AR g

=hP. (10)
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Hence, as m — o0,
Var(X ™)) ~ Var(X(™)p =8,
Let m’ = hm. Then, as m — oo, we obtain
Var(X™)) ~ L(m')Ym'~?,

where

and

NP nm/
L(nm/) i (Tm> Var(X(%57))
m’—oo L(m’) m’—o0 (mT')BVaI-(X(TT/))

(=3)
= lim »” 7VM(X 7:, )

m/=co Var(X ()
=nfnP (From(10))

=1

191

This proves necessity. For the converse, suppose that X satisfies (8). Then, from (26),

we obtain

1 . 82(k2Var(x™))
m— oo 2 m—oo Var(Xm)
§2(K2L(km)(km)~#)
m—o00 L(m)m="~
. L(km)

This proves sufficiency.

0

From Theorems 3 and 5, we can define the self-similar process with the variance of

the averaged process.

Definition 6. X is called exactly second-order self-similar with the Hurst parameter

H=1-8/2if

Var(X (™) = ¢2m =8,
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Definition 7. X is called asymptotically second-order self-similar with the Hurst pa-
rameter H =1 — /2 if

Var(X (™) ~ L(m)m™®, as m — cc.

In our fitting method, we consider the self-similarity under Definition 6, that is, we
develop the fitting method using (7).

4. Superposition Technique of MMPPs

We use a continuous-time MMPP for modeling the self-similar traffic. We construct
an MMPP with apparently self-similar behavior over several time-scales by superposing
several MMPPs. First, consider two-state MMPPs with different time-scales. That is,
the mean sojourn time of each process is in accordance with the different time-scale. Let
us superpose them to make a new MMPP. When we see this process in a large time-scale,
it looks like an ordinary two-state MMPP. If we look in a smaller time-scale, we find that
each state is composed of a smaller MMPP. If we look in a still smaller time-scale, we
find that each state of a smaller MMPP is again composed of a still smaller MMPP. This
can be repeated only a finite number of times. Therefore the MMPP is not self-similar
from the definitions in the previous section, because it looks constant when time-scale
is larger than the time constant in itself. However it can emulate self-similarity over
several time-scales. It is impossible to measure a given traffic during an infinite amount
of time. It also has been observed that LAN traffic loses self-similarity in the order of
days [4]. Thus, it is practically sufficient to use the process which has self-similarity over
only several time-scales to model the real traffic.

Now we assume that the number of states of every underlying MMPP is two. So
the MMPP obtained by the above method is also described by the superposition of
several interrupted Poisson processes (IPP) and one Poisson process. We assume that
the MMPP under consideration consists of d(> 1) IPPs and a Poisson process. We also
assume that two modulating parameters of each IPP are equal. Then we can describe
tth IPP as follows

g; —0; 00

Q; = l_‘” Ui}, A= [Aiol, (1<i<d).

Hence the superposition can be described as follows

RQ=01PQ:2D---PQua,
A:AIEBAQEB"'EBAdGB/\pa
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where @ means the Kronecker’s sum and ), is the arrival rate of the Poisson process to
be superposed. The whole arrival rate of the process A is given by

d 2\,
)\:/\pﬁ—zgl. (11)
=1

In the next section, we consider how to determine the parameters of these IPPs and the
Poisson process.

5. Fitting Procedure

In this section we describe the process of determining the parameters of MMPPs.
Their values are obtained so as to match the variance over several time-scales. Parameters
which we have to determine are o;, A\;(1 < i <d), and A,.

First, as preliminary we define the notations used in the procedure and describe
some assumptions. Let Ny; be the number of arrivals in the i-th IPP during the tth time
slot and Ny, be the number of arrivals in the Poisson process, and let 1V, (I ™) and N (‘m)

be respectively the averaged processes of Ny; and Ny,. We assume that

d
Var(X™) = Var(3_ N + NI).

tls tlp
i=1

Using (3), we obtain the variance of the i-th IPP as

Var(N{™) = 2L 4 { - _(1-e Ww)} A2,

tli 2m 4mo;  8m2o?
The corresponding variance of the Poisson process is A,/m. Because the variance of a
process which is a superposition of independent subprocesses equals the sum of individual
variances, the variance of the whole process is given by

Var(X™) = + ZV ar(NV(™)

t|i

A1 1 1
_ N + - 1— —2mo; )\2
m+4;{mai 2m20i2( ¢ )} ‘

A 1 d
m 4 i:ln v (12)

where we used (11). Using (7) and (12), we match the variance at d different points
m; (1 < i < d). Suppose the range of time-scales over which we want the process to

express self-similarity of the original process is M, < m < M., then m; is defined by

m; =mya (1<i<d),

min
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where
1
a—1
a:<mm‘”‘> . d>1. (13)
Mmin
Here, we investigate the property of ;. Let x = mo;. Then we have
1 1

m= 5 (1—e7%) = f(a).
It is easily seen that for x > 0,
1 -2z <e ™ <1—22+22% (14)
Using (14), we obtain
0< f(z) < 1.
That is, for all 7,
0<m <1 (15)

From (12) and (15), we obtain

A (m)
Var(X.
- < Var(X,;") <

Ju

IS
_|_
el
M-
x,

_|_
]~
7 N
N | >
~
()

s
Il
-

_|_
>
L

IN
3> 3>
_|_
o I
M-
N | >~
N——
[\v]

IN

(from (11))

ie.,
A (m) A 9
— X — . 1
m<Var( h )<m—|-/\ (16)

We must choose m; such that (16) is satisfied at any m;. This condition comes from that
we use a simple IPP as a sub-process. Practically, this condition never matters when m
is large, but sometimes Var(Xt(m)) is too small when m is small. Therefore, we should
be careful to choose m1, which is large enough to make Var(Xt(ml)) larger than A/mpin.

Next, we assume the following relation between o; and m;
m;o; = const (1 <i<d).

That is, o; can be described as
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This assumption comes from the intuitive understanding that a self-similar process looks
the same in any time-scale. By this assumption, we can reduce the number of the
parameters to be determined. That is, if we determine o7, we can obtain the values of
o; (2 <i<d) by using (17). Furthermore, we can obtain A, from (11) if we determine
Ai- Now the parameters we need to find are only oy and \;.

In the following, we describe the procedure of determining these parameters. We

show the parameters preliminarily required for our fitting procedure in Table 1.

Procedure of Parameter Fitting

Step 0. Find the range of oy heuristically and fix o;.

Step 1. Determine \; as the function of ;. From (7) and (12), we have

m;ﬁ myt A2

) m;ﬁ my A3
o . = + o (18)

m;ﬁ mgl A2

where B is the d X d matrix whose (i, j) element is

1 1 —2m;o;
E dm;o; ~ 8m2o2 (1 — ¢ ) (19)
vy

Solving this, we determine \; as the function of o;.

Step 2. Determine the value of o; from the range found in Step 0. Here we consider
the integral of the difference between the log-scales variance curve of the process given
by (12) and that of the self-similar process given by (7) over defined time-scales. We
determine the value of o1 so as to minimize that integral.

Step 3. Determine the values of \; from (18).

In step 1, it is necessary that B is non-singular. It is difficult to prove the non-
singularity of B for any positive integer of d, however, we can show that if a is sufficiently
large, B is non-singular for any o;. We discuss the non-singularity of the matrix B in
the next section. We can solve this problem by choosing such a.

When we minimize the integral in step 2, we must be careful to keep the values of
A; and A, larger than zero. We consider the minimum at the log-scale because we can

treat smaller time-scales more carefully.

Remark 8. In Table 2, we compare our method with that of [1]. Here, we call the
procedure of [1] covariance method and ours variance method. In our method, the
fitting procedure is exactly constructed while that of [1] contains some approximations.
However, our method has a constraint of (16) which implies that our method does not
holds when Var(Xt(m)) < A/m or Var(Xt(m)) > A\/m + A2, That is, our method is not
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Table 1

Preliminarily Required Parameters for Fitting

Parameter Meaning

A Arrival rate of the whole process

Mmin, Mmax  Minimum and maximum of time-scales over which self-

similarity is taken into consideration

o2 Variance
H Hurst parameter
d Number of IPPs

enough to fit the process whose variance is too small or too large in comparison with the

mean arrival rate. The method of [1] does not contain the specified constraints.

Remark 9. [1] proposed the refined method of [2], where the type of MMPP components
is the switched Poisson Process (SPP). Since our method is based on using IPPs, the
accuracy of the resulting MMPP of [1] is expected to be better than ours. However, the
parameters of resulting IPPs can be changed into SPPs keeping first- and second-order
properties unchanged (see [1] and the references therein for details). In addition, this
modification is performed by matching the autocorrelation of each SPP with the observed
process. Thus it is possible to refine our method using SPPs. However, we do not treat

this refinement in this paper.

Table 2

Comparisons between Variance and Covariance Methods

Variance Method Covariance Method
Required Parameters M\, H,d, 02, Time Scale A\, H,d,r(1), Time Scale
Type of Component MMPPs IPP SPP
Parameter Fitting Exact Approximation
Constraint Eq. (16) None

6. Sufficient Condition for Non-Singularity of B

In this section, we consider the sufficient condition under which the matrix B is

invertible. We use the following lemma ([15] 2.3.2. Perturbation Lemma).
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Lemma 10. Let A and C denote n x n matrices with real elements. Suppose that A
is invertible with ||A™!|| < «, where ||| is an arbitrary matrix norm. If |[A - C|| < 3
and af < 1, then C is invertible, and

a
1—af

le™ <

Let ¢ = myoy, then the (4, j)-th element of B becomes

1( 1 1 i
Bij = 4 {caij ©2¢2a2(—9) (1-e )} '

1 (a* a?F —k
— - _Z (1— —2ca .
Yk 4 { c 262( € )}

Yo Y1 Yn-1
V-1 Y o Yn—2

We define

Then we have

V—n+1V-n4+2""" Y0

This type of the matrix is called Toeplitz [10]. Note that we obtain the following inequal-

ity in a similar way to (15)

1
We define the n x n matrix A as
Yo 71 Tn—1
0 v+ Yn-2
0 0 - Yo
Then, A — B is given by
0 - 00
_ .00
A-B=—| 71
Y—n+1-Y-10

For the matrix norm, we consider the /;-norm. The /;-norm of A is defined by

n

Hﬁkiggzﬁm
1=
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where a;; is the (4, j)-th element of A. We obtain ||[A — B]|; as

—1

IA=Bll,= > |%l

k=—n+1

Note that a > 1 from (13).
Next, we consider ||A*1H1. We define the submatrix of A as

Yo Y1 Vk—1

0 v " Vk—2
A= . .

00 - 7

Since Ay is an upper triangular matrix, A,:l must be in the form as

S0 &1 &k
Lo |oaans
A= - .
00 - &
From AkAlzl = I, we have
1
50:7’
Y0

and

Yobk—1 + V1€k—2 + -+ Ye—180 = 0, k> 2.

Now we state the following lemma.

Lemma 11. Forall k > 1,
k—1
1 1
&l < 5 <1+ ) | (21)
<13

Proof. We prove the lemma by induction.
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(i) For k =1, we have
Hence,

1

&1l = —
470

(ii) Assume that (21) is satisfied for all & < m. For k =m + 1,
¢ SR
m+1 = — Ym+1-1G1-
+ 70 2= +
Hence,

|£m+1| =

1|
—_ TYm 17l5l
o |2

’Verl lgl

[Ym+1-1] &1

=
<>

MN
o
—~
=8
2
—~
DO
=}
=
N

From (i) and (ii), (21) is satisfied for all k£ > 1.

We obtain HA‘1H1 as

n—1
1AM ] = > el
k=0

Using Lemma 11, we obtain the following inequality

1 n—1 1 1 k—1 1 1 n—1
Ail = _ 1 _ = — 1 - .
| H1<’Yo+;47§ < +470> 70( +470)

199
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From Lemma 10, the sufficient condition for the matrix B to be invertible is given by

1 1\ 1
— 14+ — — < 1.
Yo ( 470> de(a —1)

1 <1+ 1 )”‘1
4ery 49 )

We state the following theorem as the result of this section.

Solving for a, we obtain

a>14+

Theorem 12. If a satisfies the following inequality

1 1 n—1
14+ — , 22
dero < 4’Yo> (22)

Remark 13. Note that the value of right hand side of (22) depends on ¢ and n, i.e., mq,

a>1+

then the matrix B is invertible.

o1 and n.

7. Numerical Results

In this section, we present some numerical results obtained from our fitting method.
We show the variance-time curves of the resulting MMPPs. Then, we examine the
queueing behavior of the resulting MMPP/D/1 comparing with the simulation for the
queueing system with the self-similar traffic. We compute performance measures such as

waiting time using analytical results presented in [7].

7.1. FBM and RMD Algorithm

For our simulation, simulated self-similar traffic trace is needed. We generate the
fractional Brownian traffic (FBT) based on the FBM with the random midpoint dis-
placement (RMD) algorithm [11] and use it as self-similar traffic. In this subsection, we
summarize the FBM, FBT and RMD algorithm. The readers are referred to [11] and
[14] for details.

The FBM Z(t) is a continuous zero mean Gaussian process. It has stationary

increments and
E[Z(t)%] = [t[*".

In the case of H = 0.5, Z(t) is the standard Brownian motion. Using FBM, the fractional
Brownian traffic (FBT) is defined as the cumulative arrival process A(t) [14]

Alt) = pt+/CuZ(t),  —oo <t < oo,
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where Z(t) is the FBM, p the mean rate, and ¢ the variance coefficient. The mean and
the variance of the FBT are as follows

E[A(t)] = pt, Var[A()] = Cult*".
We obtain the following
Var(A(£t)) = £ Var(A(1)),

which shows A(t) is self-similar.

We use the RMD algorithm in order to generate FBT. The RMD algorithm gen-
erates FBM traces approximately. It never requires large amount of time to generate
long traces. However, it must be applied carefully in quantitative studies because the
parameters of the generated traces can differ from their target values.

The algorithm is summarized as follows. Assume that we want to generate an FBM
trace in the time interval [0, T]. Roughly speaking, it works recursively; first subdivides
the interval [0, 7], then determines the values of the process at the midpoints from the
values at the endpoints. Let us consider the case of determining the values Z (%) at
the midpoint of an interval [t1, t2] from the values Z(t1) and Z(t2) at the endpoints. In

this algorithm, it is assumed that the midpoint displacement Z(“;t?) — Z(tl);z(m i

S
independent of the increment Z(t2) — Z(t1) over the whole interval. This assumption is
not valid except for the case of H = 0.5, but results in fast computation at the expense
of exactness. The resulting sample sequences of fractional Gaussian noise (FGN), which
is an increment process of FBM, are shown in Figure 1 and Figure 2. In those figures,
the horizontal axis is time while the vertical axis represents the number of arrivals per

unit interval.

7.2. Generated Sequences and Fitting Results

Using RMD method, we generated Samples 1 to 3, three sequences of arrival time
whose time-scale is up to 10%. Samples 1, 2 and 3 were generated changing H = 0.6, 0.7
and 0.8, respectively, with A = 1.0 and 02 = 0.6. Then we estimated mean arrival rate A,
variance o2, and Hurst parameter H for each sequence using aggregated variance method
(for details, see [12] and references therein). The results of estimation are presented in
Table 3.

In Figures 3 and 4, we show the variance-time curves of the MMPPs obtained from
Sample 2 according to our fitting method. In both figure, dotted lines illustrate the
variance curves of resulting MMPPs and solid lines correspond to o?m 7.

Figure 3 represents the effect of the number of component MMPPs on the variance-

time curves. We fit MMPP parameters to Sample 2 with mmin = 102 and Mmumay = 10°,
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Figure 1. Sample Sequence of FGN Based on RMD Algorithm, H = 0.5, = 1.0,{ = 0.1.

H=0.8
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Figure 2. Sample Sequence of FGN Based on RMD Algorithm, H = 0.8, x = 1.0,¢ = 0.1.

Table 3

Estimated Parameters of Sample Sequence

Sample 1  Sample 2 Sample 3

A 1.00441 1.00071 0.98349
a? 0.59710 0.60290 0.60008
H 0.59923 0.69952 0.79841

changing d = 2,3 and 4. It is observed that we can imitate the variance curve of the
exact self-similar process as d increases.

Figure 4 shows the variance-time curves with d = 4 changing the maximum time-
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scale Mmuyayx = 10%, 105, and 103, respectively. From this figure, it is observed that the
accuracy of MMPP fitting within the specified time-scale becomes worse when Mmmyax

increases.
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Figure 3. Variance-Time Curves of MMPPs for Sample 2, Changing d.
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Figure 4. Variance-Time Curves of MMPPs for Sample 2, Changing Time-Scales.

7.8. Queueing Behavior

In this subsection, we show the queueing performance of the resulting MMPP/D/1

in comparison with the simulation. As the performance measure, we calculated mean
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waiting time and complement distribution of queue length. Each simulation in the fol-
lowing graphs was driven by corresponding sample data generated by RMD (see Table

Figures 5 to 7 show the waiting time curves of the resulting MMPP/D/1 in com-
parison with the simulation. In those figures, we set muyin = 102 and muyax = 10°. The
waiting times of MMPP/D/1 are calculated changing the number of component MMPPs.
It is observed that our fitting method is performed well in the case of H = 0.59923 (Figure
5) while not good when H = 0.79841 (Figure 7).

In Figure 5, the waiting time of MMPP/D/1 exhibits the good agreement with
the simulation result irrespective of the number of d. In Figure 6, the waiting times
of MMPP/D/1 are getting different from the simulation result as the traffic intensity
becomes large. In particular, the discrepancy between simulation and MMPP/D/1 under
d = 2 is the largest. We also observe that the waiting times under d = 3, 4 and 5 are
almost the same. These tendencies are remarkable in Figure 7.

From above observations, our fitting method performs well for evaluating the mean
waiting time when the Hurst parameter is small. In this case, the number of component
MMPPs does not affect the waiting time so much. However, when the Hurst parameter
is large, our fitting method does not work well. In addition, the mean waiting time is
affected by the number of component MMPPs, and increasing the number of components

does not always make mean waiting time improved.

H=0.599228, 10"5
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Figure 5. Mean Waiting Time under Sample 1.

Next, we investigate how the time-scale chosen in our fitting procedure affects
the buffer behavior. Let L denote the number of customers in MMPP/D/1 system at
an arbitrary point of time. Here we consider the probability Pr(L > N) as the loss
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Figure 6. Mean Waiting Time under Sample 2.
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Figure 7. Mean Waiting Time under Sample 3.

probability of the system with size N. Figures 8 to 10 present the curves of Pr(L > 10)
changing My ayx, while My, is fixed to 102. In these figures, Sample 2 is used for fitting
and simulation.

In Figure 8, we set the number of component MMPPs equal to two. It is observed
that Pr(L > 10) is not affected by mmax so much and that it gives good approximation
in comparison with the simulation. However, Figure 9 illustrates that muyax have a large
effect on Pr(L > 10) in the case of d = 3. In this figure, Pr(L > 10) becomes large as
Mmax 1S getting large. Figure 10 is the case of d = 4 and we observe the same tendency

as Figure 8.
From these results, it seems that our fitting method is not robust in terms of
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Figure 8. Pr(L > 10) of Sample 2, d = 2.
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Figure 9. Pr(L > 10) of Sample 2, d = 3.

choosing time-scale and hence it is not available for investigating the impact of the time-
scale on the queueing behavior. Further research is needed to capture the effect of the

time-scale using Markovian input model.

Remarks. 1. In our fitting procedure, we cannot choose any number of d. For example,
the range of d is from three to seven under Sample 1 with myin = 10% and mupax = 10°,
while it is from two to four under Sample 2 with My, = 102 and Mmymax = 10*. The
number of component MMPPs is affected by both Hurst parameter and the range of
time-scales.

2. For applying our fitting method to the practical situation, we must be careful to choose
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Figure 10. Pr(L > 10) of Sample 2, d = 4.

the number of component MMPPs. Under numerical calculations, we also observed
that the resulting MMPP/D/1 becomes untractable when both Hurst parameter and
the number of component MMPPs are large. For example, the probability matrix of
fundamental period, namely G in [7], is computed in a iterative way and the convergence
of G is largely affected by Hurst parameter and the number of states of MMPP.

8. Conclusions

In this paper, we first gave some definitions of self-similarity and proved the equiv-
alent definition of second-order asymptotically self-similar process. We then proposed a
fitting method for the self-similar traffic in terms of MMPP. We constructed an MMPP
as the superposition of two-state MMPPs and fit it so as to match the variance function
over several time-scales.

In the numerical examples, we presented the variance-time curves and queueing
performance. As for the variance-time curves, the resulting MMPP mimics the ideal
self-similar process well over the specified time-scales. In addition, the accuracy becomes
improved as the number of component MMPPs is getting large. Therefore, we can say
that our proposed method works well in the sense of statistical characteristics of traffic.

In terms of the queueing performance, we investigated the mean waiting time and
the tail distribution of the queue length for the single-server queueing system with deter-
ministic service. Numerical results of mean waiting time showed that our fitting method
works well under light traffic regardless of the Hurst parameter. This is because the
long-range effect of the arrival process tends to disappear under light traffic. However,

under heavy traffic, the discrepancy between MMPP/D/1 and simulation becomes large
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when H is around or greater than 0.7. This is due to the LRD of the self-similar traffic.
From this result, our fitting method is not sufficient for predicting the mean waiting
time accurately under the heavy traffic even when the value of H is moderate. It is the
limitation of the fitting based on the second-order statistics [1,2,4].

Fortunately, it seems that our method succeeds in giving the upper bound of the
mean waiting time even when the traffic intensity is high. For obtaining the tight upper
bounds, we have to be careful for choosing the number of component MMPPs. Numerical
results suggested that the large number of component MMPPs gives the tight upper
bound of the mean waiting time.

As for the tail distribution of the queue length, our proposed fitting does not work
accurately. However, as is the case of the mean waiting time, the numerical results
showed that it gives the upper bounds regardless of the traffic intensity. In particular,
the values under heavy load tend to be tight. Therefore, our fitting method is useful for
evaluating the tail distribution under heavy traffic situation.

As we stated in the second remark of section 5, changing the parameters of resultant
IPPs into SPPs will provide the further improvement of the bounds for performance
measures. This modification can be performed not only with keeping first- and second-
order properties unchanged, but also by matching the autocorrelation of each SPP with
the observed process. Thus it is expected to refine the tightness of bounds for performance
measures using the modified method based on the SPPs.

Since our fitting method is not robust in terms of choosing time-scale, it is not
enough for investigating the impact of the time-scale on the queueing behavior, which is
a growing subject on the practical use of the Markovian traffic model. Further research

is needed to capture the effect of the time-scale using Markovian input model.
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Appendix
A. Proof of (3)

Using P*(z,t), the variance of Ny is given by
0?P*(2,t)

Var(Ny) == 5.2

+E(N:) — {E(No)}*. (23)

z=1
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To evaluate the first term of (23), we use the following equation

] )
z=1

where P(z,s) is the Laplace transform of P*(z,t) and L™" denotes the inverse Laplace

0% P*(z,t) 9%P(z,s)

0z2

transform. P(z,s) is given by

P(z,8)=[s] —Q — (2 — 1)A] !
The second derivative of P(z,s) at z = 1 is given by

9%P(z,s)

= = 2[s] — Q)" {Als] — Q]'}*.

z=1

Since w[s] — Q] = sm, we have w/s = w[s] — Q]~!. Similarly, since [s] — Qle = se, we
have e/s = [s] — Q] 'e. Using these, we obtain

0?P 2
T % B e= ?wA(sI - Q) 'Ae
2 A Ay A3 A
= —— + 2+ 2+ 2 (24)
o1+o2 |s+o01+ 09 s s s
where
o102(A1 — A2)? (0122 + 02)1)?
A, = Do T AT g IR T RAUT Al () +09) Ay, Ay = —A.
! (01 + 02)3 2 o1+ 00 3= (01 +02)4 4 1
Inverting (24) yields
0?P*(z,t) 2 Ay
— = Aje (oot L 2242 4 Agt 4 Ayl
" 9z* z:le 01+ 02 1e + 2 tAstt A

Substituting above into (23), we obtain (3).

B. Proofs of Theorems in Section 3

In this appendix, we summarize the proofs of Theorems 3 and 4 in Section 3. For
details, the readers are referred to [19].
First, note that Var(X;) and Cov(X, X¢4x) have the following relations.
o?

Var(X (™) = — Z m — k)Cov(Xy, Xy i1, (25)

Cov(Xs, Xean) = 752(k2Var( ). (26)
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Proof of Theorem 3. 1f X satisfies (4), then from (25),

m
2 20.2

Var(X (™) =

Conversely, assume that X satisfies (7), then from (26),

10%(k?Var(X®))  16%(k20%k~ %) 1
T(k) = 5 = — 3

o2 2 o

Hence the theorem follows.

_ 1520128
S8 (k7).

0

Proof of Theorem 4. Assume that X satisfies (4). Now, we consider the averaged process

X' = X Applying (26) to X’ yields

1
Cov(X}, X{1p) = 562(k2Var(X/(k))).

Note that

x'(k) — x(km)

Then, from (27),
Cov(x™ xmy _ Lo (km)
ov(X; ", X)) = 55 (k*Var(X ™).
Dividing by Var(X (™)), we obtain

1 52 (K*Var(Xkm))) 1 62(k20? (km)~7)

(m) _
O S ) 27 oZm P

1 2(1.2— _
= 50%(k By = r(k).

(27)
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